BUILDINGENERGY BOSTON

Equitable, Data Driven, Domestic Hot Water Decarbonization

Neil Donnelly (New Ecology)
Charlie Simek (New Ecology)

Curated by Keirstan Field (EPRI)

Northeast Sustainable Energy Association (NESEA) | March 19, 2024

Presented by Charlie Simek & Neil Donnelly

NESEA BuildingEnergy Boston 2024 March 19, 2024 **Equitable, Data Driven, Domestic Hot Water Decarbonization**

Decarbonization Process

Load Reduction Equipment Optimization

Electrification

Indoor Air Quality & Renewables

DHW Decarbonization Priorities

Provide the service

Keep it simple

Accessibility, through low costs & support

Understand Demand → Size the System

DHW Systems

Methods & Data

Hot Water Energy Flow Diagram- Gas Fired

Hot Water Energy Flow Diagram- Heat Pump

Goals

- 1. What Measured Loads Look Like
- 2. Efficiency Impacts of System Sizing
- 3. First Cost Impacts of System Sizing

Goals

- 1. What Measured Loads Look Like
- 2. Efficiency Impacts of System Sizing
- 3. First Cost Impacts of System Sizing

ASHRAE Sizing

Low:

- Working
- Elderly
- Couples
- Middle Income

Medium:

- Singles
- Families
- Single-parent households

High:

- Families
- Low Income
- Not Working
- High percentage of children

			Peak I					
Guideline (Min)	5	15	30	60	120	180	Max Daily	Avg Daily
Low (GPP)	0.4	1.0	1.7	2.8	4.5	6.1	20	14
Medium (GPP)	0.7	1.7	2.9	4.8	8.0	11.0	49	30
High (GPP)	1.2	3.0	5.1	8.5	14.5	19.0	90	54

Gallons consumed per person (GPP) at 120°F over the time interval

ASHRAE Standards vs. Measured Peak DHW Usage

ASHRAE Standards vs. Measured Peak DHW Usage

ASHRAE Standards vs. Measured Peak DHW Usage

Goals

- 1. What Measured Loads Look Like
- 2. Efficiency Impacts of System Sizing
- 3. First Cost Impacts of System Sizing

Goals

- 1. What Measured Loads Look Like
- 2. Efficiency Impacts of System Sizing
- 3. First Cost Impacts of System Sizing

Gas-fired Hot Water Heater System Diagrams

188-Unit Elderly Housing

Direct-Fired gas boilers with Storage

- 201 Bedrooms
- 2x 500 Kbtu boilers
- 4x 120 gal storage tanks
- Constant recirculation

Total System Efficiency vs. Utilization

Histogram – Rolling 3 Hour Consumption Rate

Air Source Heat Pump Hot Water Heater System Diagrams

Air Source Heat Pump Hot Water Heater System Diagrams

132 Unit Building Description

Ganged Sanco HPWHs with Storage

- 132 one bedroom units, 132 occupants
- 10x Sanco heat pump water heaters
- 1000 gallons of storage (at 160 °F)
- 120 gallon swing tank with 13.5 kW elements

Total System Efficiency vs. Utilization

Daily System Efficiency

Energy Use Breakdown

Recirculation Loads

	Bldg A	Bldg B	Bldg C	Bldg D
Recirc gpm	2.5	5.8	18.7	7.2
DHWS	117.5	134.6	132.1	127.1
DHWR	115.1	126.7	125.5	117.1
Btu/h Recirc	3,100	22,870	61,391	35,750
# apts	29	52	107	92
Watts/apt	31	129	168	113
Btu/h/apt	107	440	574	387

Goals

- 1. What Measured Loads Look Like
- 2. Efficiency Impacts of System Sizing
- 3. First Cost Impacts of System Sizing

Goals

- 1. What Measured Loads Look Like
- 2. Efficiency Impacts of System Sizing
- 3. First Cost Impacts of System Sizing

	Resultant Systems					
Interval (minutes)	Total Gallons	Local Slope of Incremental Gallons Per Minute	Ideal Heating Rate (Btu/h)	Storage Volume (gallon)	# of Sancos (15,400 Btu/h each)	Installed System Cost
5	52	7.4	298,368	74	20	\$250,000
15	126	5.92	238,694	180	16	\$218,000
30	215	4.69	189,101	307	13	\$199,000
60	355	3.95	159,264	507	11	\$200,000
120	592	3.7	149,184	846	10	\$228,000
180	814	2.23	89,914	1163	6	\$221,000
1440 (day)	3626				13 (@12 hour runtime)	

First Cost Implications

	Peak Minutes								
Guideline	5	15	30	60	120	180	Max Daily	System	Cost
Low	0.4	1.0	1.7	2.8	4.5	6.1	20	6s+300	\$119,000
Medium	0.7	1.7	2.9	4.8	8.0	11.0	49	13s+300	\$198,000
High	1.2	3.0	5.1	8.5	14.5	19.0	90	24s+500	\$346,000
Measured	.71	1.58	2.95	4.30	6.69	9.37	35.4	10s+300	\$164,000

Gallons per person at 120°F

What's Next for You

Owners

Engineers

Program Administrators

Equipment Reps

Charlie Simek

Energy Engineer charles.simek@newecology.org 617-557-1700 x7095

Neil Donnelly

Senior Energy Engineer neil.donnelly@newecology.org 617-557-1700 x7095

www.newecology.org

A.1 - System Schematic, Temperature, and Flow/Btu Sensor Locations

A.2 - Data Accuracy & Error Checking

- Ultrasonic flow meter accuracy:
 - ±1 gpm for the range of flow rates encountered
- Temperature Sensor accuracy: ±1% temp reading
- Temperature sensor transient response
- Consumption below or above expected values
- Checking measured energy and water consumption against utility meters

A.3 - Outdoor Air Temperatures and Heat Pump Capacity

- As outdoor air temperatures decrease
 ASHPs that are extracting heat from the
 ambient air must work harder to output
 the same amount of heat
- At a certain threshold the heat pump's capacity will begin to decrease as well
- Heat pumps using CO₂ as their refrigerant can operate down to colder temperatures than other refrigerants without losing capacity
- CO₂ has the added benefit of only having a global warming potential (GWP) of 1.0 compared to other refrigerants with GWPs in the 1000s

https://www.eco2waterheater.com/_files/ugd/e88920_b4075b5329fe46edb29044ae9b7116bf.pdf

A.4 - Outdoor Air Temperature Histogram (Boston)

 Supplement the capacity of the hot water system with electric resistance or boilers to meet the load when heat pumps lose capacity

A.5 - Sizing for the Majority of Runtime

