

AIA Provider: Northeast Sustainable Energy Association

Provider Number: G338

The Enlightened Structure

Reducing Material-Based Carbon Emissions Course Number BE1532

Jim D'Aloisio Mark Webster Russ Miller-Johnson Kara Peterman

4 March 2015

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

This course is registered with AIA CES

Course Description

The role of a building's structure, and of the structural engineer, in achieving sustainability goals is frequently marginalized. Yet it represents a majority of a new building project's material mass and embodied energy, and is responsible for a large portion of its CO_2e emissions. It can also play a role in the annual energy usage of a building, both in good ways (i.e. thermal mass) and bad (i.e. thermal bridging). This presentation will look at quantifying the CO_2e of conventional structural systems (concrete, steel, masonry, timber), and alternative systems (SIPs, ICFs, strawbale), and what might be done differently, if CO₂e reduction was a design parameter. We will then explore a structural system designed for deconstruction (DfD) and how this approach might influence CO_2e emissions. Finally, we will identify some structural details which can cause significant thermal bridging, and strategies to reduce or eliminate the energy loss resulting from these conditions.

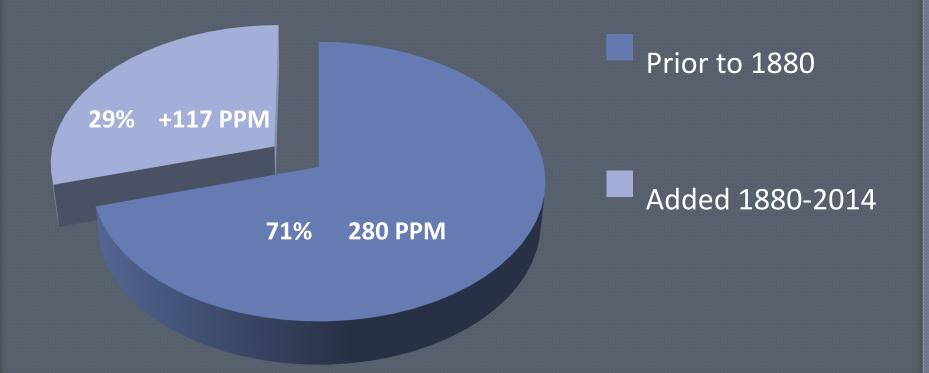
Learning Objectives

At the end of the this course, participants will be able to:

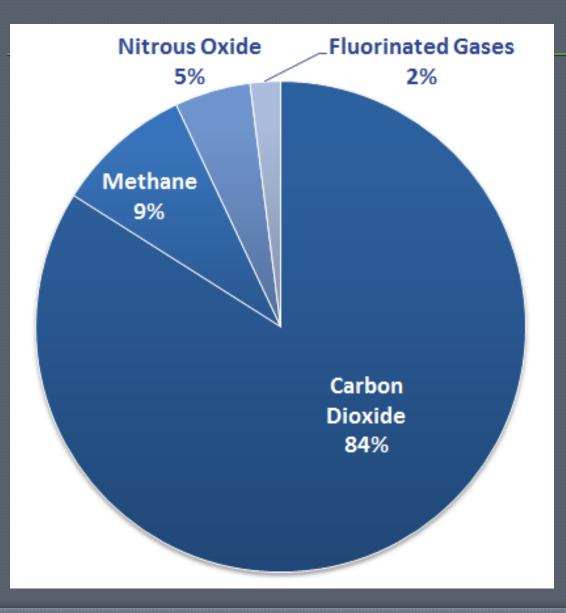
- Compare the CO₂e emissions of various structural construction systems.
- Consider strategies to minimize CO₂e emissions from building structures of various types.
- 3. Explore the benefits of structural systems designed for deconstruction.
- Realize the benefits of practical strategies to minimize structural thermal bridging on building envelope energy losses.

• Carbon and Structures 20 min. Jim D'Aloisio • LCA of DfD Structural System 20 min. Mark Webster Structures and Thermal Bridging 20 min. Russ Miller-Johnson • Thermal Bridging of Cladding Systems 20 min. Kara Peterman • Questions, Answers? 10 min.

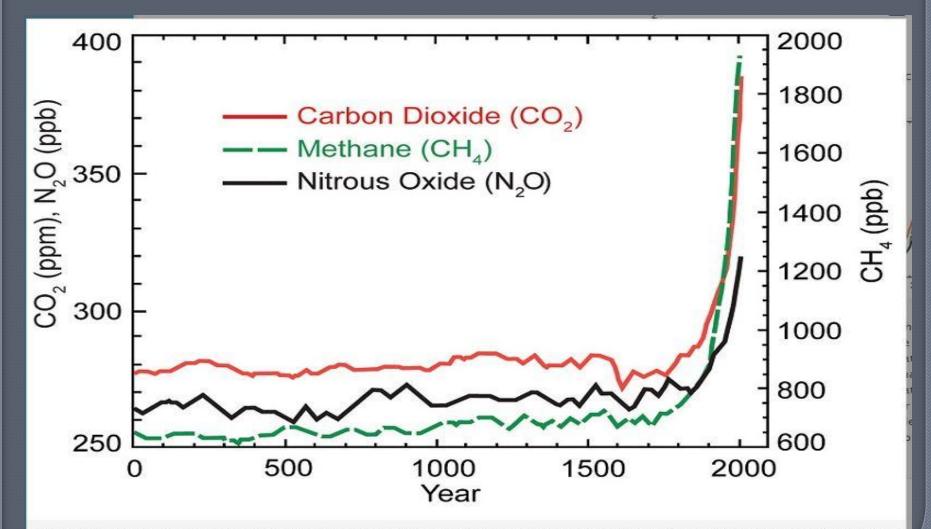
Carbon and Structures


James A. D'Aloisio, P.E., SECB, LEED AP BD+C

Klepper, Hahn & Hyatt


315.446.9201 jad@khhpc.com Structural Engineering Landscape Architecture Building Envelope Systems

CO2 Increase Since 1880


41% increase in atmospheric CO₂ since 1880

U.S. Greenhouse Gas Emissions in 2011

Source: <u>www.epa.gov/</u> climatechange

It's not just CO_2 ! **GWP Gases** CO_2 -e = Carbon Dioxide Equivalent

This graph shows the increase in greenhouse gas (GHG) concentrations in the atmosphere over the last 2,000 years. Increases in concentrations of these gases since 1750 are due to human activities in the industrial era. Concentration units are parts per million (ppm) or parts per billion (ppb), indicating the number of molecules of the greenhouse gas per million or billion molecules of air.

Carbon Pallet – Concrete

• NRMCA EPD Tally!

- http://www.nrmca.org/sustainability/EPDProgram/Downloads/ NRMCA%20EPD%2010.08.2014.pdf
- Approximations
 - 1.0 lb. CO₂ for every 1 lb. of Portland cement in mix
 - 0.1 lb. CO₂ for every 1 lb. of concrete placed
 - Varies from about 350 to 800 lbs. per cubic yard
- CO₂ Reduction Strategies:
 - Use fly ash & slag, other SCM's
 - Do not over-specify strength or cement content
 - Minimize concrete volume when possible
- Construction Idling vehicles, worker travel, etc.

Carbon Pallet – Masonry

Precast Concrete Masonry Units (CMU)

- Typical footprint similar to concrete
- Use of fly ash & slag can have significant CO₂ redux
- Ask your supplier for reduced-cement units. Lightweight?

Masonry Grout

- Typical footprint similar to concrete
- Proportion method results in cement-rich grout
- Use of fly ash & slag can have significant CO₂ redux
- Other Masonry Products
 - Brick Clay firing, transportation
 - Stone Harvesting, finishing, transportation
 - Fly Ash Brick NO cement, NO firing, transportation

Carbon Pallet – Steel

• Electric Arc Furnace

- Rolled sections, reinforcing bars, OWSJ's
- Averages around 0.85 lbs. CO₂ per lb. of steel

Basic Oxygen Furnace

- Hollow sections, sheet metal
- Averages around 1.2 lbs. CO₂ per lb of steel

Reused (Salvaged) Structural Steel

- Not commonly considered steel is normally recycled and recast, not reused
- Feasibility and cost depends on availability
- Can reduce CO₂ footprint from 1.0 lbs./lb. to 0.1 lbs./lb.
- Must be "clean," inspected, shipped, fabricated, shipped

Carbon Pallet - Assumptions

- For Insulation:
 - 100% of blowing agents included in tally
 - XPS assumed HFC-134a
- For wood value of carbon sequestration during its service life is not included
- Nominal amount of waste assumed
- Nominal worker travel assumed

Insulation Material	R-value R/inch	Density Ib/ft³	Emb. E MJ/kg	Emb. Carbon kgCO ₂ /kg	Emb. Carbon kgCO ₂ / ft ² •R	Blowing Agent (GWP)	Bl. Agent kg/kg foam	Blowing Agent GWP/ bd-ft	Lifetime GWP/ ft²•R
Cellulose (dense-pack)	3.7	3.0	2.1	0.106	0.0033	None	0	N/A	0.0033
Fiberglass batt	3.3	1.0	28	1.44	0.0165	None	0	N/A	0.0165
Rigid mineral wool	4.0	4.0	17	1.2	0.0455	None	0	N/A	0.0455
Polyisocyanurate	6.0	1.5	72	3.0	0.0284	Pentane (GWP=7)	0.05	0.02	0.0317
Spray polyure- thane foam (SPF) – closed-cell (HFC-blown)	6.0	2.0	72	3.0	0.0379	HFC-245fa (GWP=1,030)	0.11	8.68	1.48
SPF – closed-cell (water-blown)	5.0	2.0	72	3.0	0.0455	Water (CO ₂) (GWP=1)	0	0	0.0455
SPF – open-cell (water-blown)	3.7	0.5	72	3.0	0.0154	Water (CO ₂) (GWP=1)	0	0	0.0154
Expanded polystyrene (EPS)	3.9	1.0	89	2.5	0.0307	Pentane (GWP=7)	0.06	0.02	0.036
Extruded polystyrene (XPS)	5.0	2.0	89	2.5	0.0379	HFC-134a ¹ (GWP=1,430)	0.08	8.67	1.77

GWP of Insulation Types

1. XPS manufacturers have not divulged their post-HCFC blowing agent, and MSDS data have not been updated. The blowing agent is assumed here to be HFC-134a.

Source: BuildingGreen

Snapshot: Jobsite Labor

Hypothetical Labor Situation 12 workers, driving 12 trucks that get 12 mpg, 12 miles to and from jobsite, for 12 weeks....

 $12 \cdot 20$ lbs. CO₂/g/12 mi./g · 12 mi. · 12 · 5 = **14,400 lbs. CO₂**

De-Materialization

Reducing quantity of material usage on a building project
 A ton of steel saved is a ton of steel CO₂-e footprint eliminated.

 Must maintain function, safety, redundancy
 Considerations include maintaining versatility, flexibility, future usage and adaptability.

 Usually requires more engineering effort
 May or may not be cheaper than the use of slightly oversized, repetitive similar units

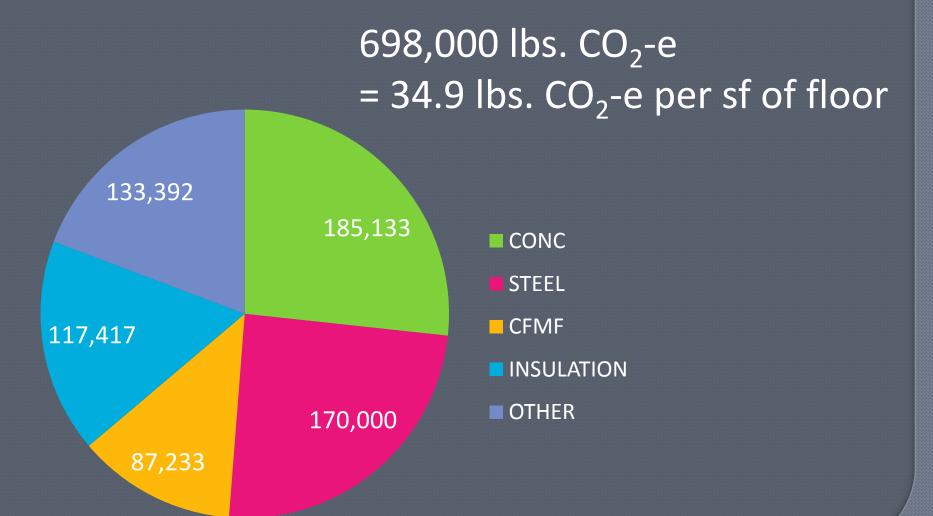
Example Prototype Building

Two-story office building • Footprint: 80 X 125 = 10,000 sf • Perimeter: 2 X (80 + 125) = 410 lf • 12.2' floor-floor \rightarrow 410 X 12.2 X 2 = 10,000 sf • Fenestration on 20% of walls Opaque walls: 80% X 10,000 = 8000 sf • Fenestration: 20% X 10,000 = 2000 sf

Example Prototype Building (cont.)

ROOF

- Single-Ply Roofing System: EPDM, EPS, recovery board, VB 10,000 sf
- Roof Deck: 20 ga. galv. steel roof deck 10,000 sf
- Roof Joists: 2.5 psf x 10,000 25,000 lbs.
- Steel Framing: girders, spandrels, columns, bracing, lintels, etc.:
 3 psf X 10,000 30,000 lbs.
- SECOND FLOOR
 - Concrete Floor Slab: 4000 psi, 2.75" effective thickness -
 - Composite Steel Deck: 1½" 20 ga. 10,000 sf
 - Slab Reinforcing: #4@16" both ways for 10,000 sf
 - Steel Framing: purlins, girders, spandrels, columns, bracing, lintels, 2 sets of stairs, etc.
- FIRST FLOOR
 - Concrete Floor Slab: 5" thick, 3000 psi
 - Slab Reinforcing: #4@16" both ways


Example Prototype Building (cont.)

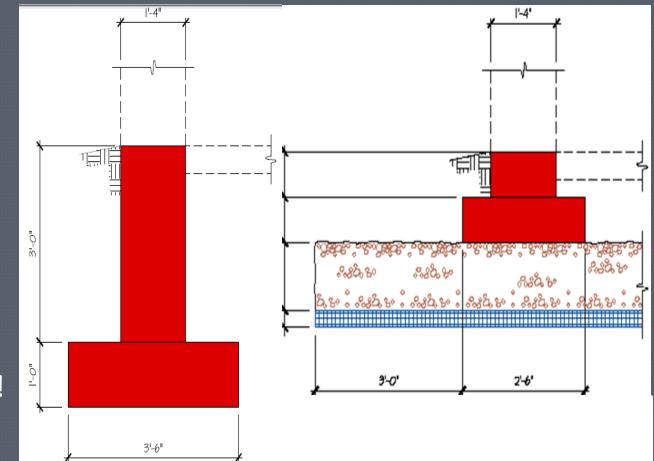
• EXTERIOR WALLS

- Interior Sheathing: 5/8" gypsum board 8000 sf
- Vapor Barrier: 4 mil polyethylene 8000 sf
- Studs: 6" 18 ga, 18" o.c. 8000 sf
- 6" Fiberglass batt insulation between studs 8000 sf
- Exterior Sheathing: 5/8" exterior gyp board 8000 sf
- Continuous Insulation: 2" rigid EPS 8000 sf
- Brick: 8000 sf
- Brick Ties: for 8000 sf of brick
- Windows: Assume wood frames, E-code compliant
- FOUNDATIONS
 - Perimeter Strip Footings and Foundation Walls
 - Interior Spread Footings
 - Perimeter Insulation: 2" XPS, 4 feet deep X 410 lf = 1640 sf

CARBON CALCULATION	AMOUNT	UNIT	CO2e/UNIT	lbs. CO2-e	TOTAL
Roof					
Single-Ply Roofing System: EPDM - 10,000 sf	10,000	sf	3.00	30,000	30,000
Roofing Insulation: 7" polyiso - 10,000 sf	5,833	cu. Ft.	7.26	42,350	42,350
Roof Deck: 20 ga. galv. steel roof deck – 10,000 sf - 2.2 psf	22,000	lbs.	1.79	39,380	39,380
Roof Joists: 2.5 psf x 10,000 sf	25,000	lbs.	1.00	25,000	25,000
Steel Framing: girders, spandrels, columns, bracing, lintels, etc.: 3 psf X 10,000	30,000	lbs.	1.00	30,000	30,000
Second Floor					
Concrete Floor Slab: 4000 psi, 4.5" total thickness 3.5" effective conc. thickness	437,500	lbs.	0.13	56,875	56,875
Composite Steel Deck: 2" 20 ga. – 10,000 sf - 2.3 psf	23,000	lbs.	1.79	41,170	41,170
Slab Reinforcing: #4@16" both ways for 10,000 sf - 0.67 plf X 12/16 X 2 =	17,867	lbs.	0.59	10,541	10,541
Steel Framing: purlins, girders, columns, bracing, lintels, stairs, etc 12 psf	120,000	lbs.	1.00	120,000	120,000
First Floor					
Concrete Floor Slab: 5" thick, 3000 psi	625,000	lbs.	0.10	62,500	62,500
Slab Reinforcing: #4@16" both ways for 10,000 sf - 0.67 plf X 12/16 X 2 =	17,867	lbs.	0.59	10,541	10,541
Exterior Walls					
Interior Sheathing: 5/8" gypsum board - 8000 sf	8,000	sf	0.12	960	960
Vapor Barrier: 4 mil polyethylene - 8000 sf x .004 x 19 lbs./1000 sf	152	lbs.	0.00	0	0
Studs: 6" 18 ga, 18" o.c 8000 sf - 0.56 lbs/lf X 8000*12/18 x 1.25	3,733	lbs.	1.79	6,683	6,683
6" Fiberglass batt insulation between studs - 8000 sf	4,000	lbs.	1.40	5,600	5,600
Exterior Sheathing: 5/8" exterior gypsum board - 8000 sf	8,000	sf	0.12	960	960
Continuous Insulation: 2" rigid EPS - 8000 sf	1,333	lbs.	2.90	3,867	3,867
Brick: 8000 sf	304,000	lbs.	0.16	48,032	48,032
Brick Ties: for 8000 sf - say 2 psf	16,000	lbs.	0.59	9,440	9,440
Windows: Say wood frames	2,000	sf	22.00	44,000	44,000 fi
Foundations					
Perimeter Strip Footings and Foundation Wall: 410 lf X 6 sf	369,000	lbs.	0.10	36,900	36,900
Spread Footings: say 12, 6X6 footings	77,760	lbs.	0.10	7,776	7,776
Perimeter Insulation: 2" XPS, 4 feet deep X 410 lf = 1640 sf	547	lbs.	120.00	65,600	65,600
TOTAL CO2-e				698,175	698,175
TOTAL CO2-e per SF				34.908766	

Results for 2-Story, 10,000 sf Office Building:

Some Possible Variations


- 1. Frost-protected shallow foundations
- 2. PLUS concrete to have 25% less cement
- 3. PLUS rock wool insulation instead of XPS
- 4. PLUS wood structural framing and studs instead of steel
- Base case using aluminum frame windows instead of wood

Frost-Protected Shallow Foundations

<u>LEFT</u>: Conv. Ftg/fdn wall Aconc = 7.5 sf/ft.

<u>RIGHT</u>: FPSF Aconc = 2.6 sf/ft.

65% redux of conc!

Using 25% SCM substitution \rightarrow 74% redux of Portland cement!

Window Footprints

1 m² of window pane = 10.76 sf add for frame = 12.9 say 13 sf

1 kg = 2.2 lbs. 1m = 3.28 feet

Aluminum

486 kg = 1070 lbs. /13 sf = 82 lbs. CO_2/sf • <u>PVC</u> 258 kg = 568 lbs. / 13 sf = 44 lbs. CO_2/sf • <u>Wood</u> 130 kg = 286 lbs. / 13 sf = 22 lbs. CO_2/sf

Source: http://www.mdpi.com/2075-5309/2/4/542/htm

Some Possible Variations Lbs. CO₂ from Construction of 20,000 sf Bldg.

Insulated Concrete Forms

Insulated Concrete Forms GWP Gas Emissions

10,000 -		
9,000 -		
8,000 -		
7,000 -		
6,000 -		
5,000 -		
4,000 -	Superstructure V	/all
3,000 -	Slab on Grade	
2,000 -	1023 Foundation	
1,000 -		
0 -	85	
	Construction Annual Heating	3

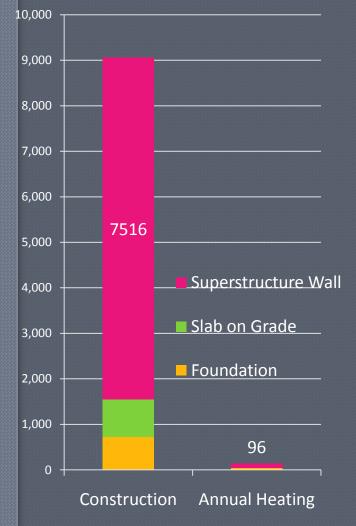
10 00

MATERIAL	Thickness	Unit	R-factor	Weight (lbs.)	lbs. CO2e	lbs. CO2e/sf
Exterior composite siding	1	assembly	0.08		85	
(2) 2 1/2 layers EPS Insul.	5	inches	19.5	42	121	
Exterior CFMF hat channels	1	layer		40	72	
5" 40% SCM Concrete	5	inches	0.4	6250	500	
Reinforcing - (2) #4@12" EW	1	assembly		275	162	
Interior CFMF hat channels	1	layer		40	72	
Interior gypsum sheathing	1	layer	0.56		12	
Interior/exterior air film	1	layer	0.85			
Thermal mass effect			2.1			
TOTAL			23.5		1023	10

Structural Insulated Panels

Polyiso Structural Insulated Panel GWP Gas Emissions

9,000 —			MATERIAL	Thickness	Unit	R-factor	Weight (lbs.)	lbs. CO2e	lbs. CO2e/sf
8,000 —			Exterior composite siding	1	assembly	0.08		85	
7,000			(2) 7/16" OSB	1	assembly	1.25		30	
5,000			3 11/16" Polyiso Insulation	3.6875	inches	20.3	68	223	
4,000 —		Superstructure M/all	Exterior gypsum sheathing	1	layer	0.56		12	
3,000 —		Superstructure Wall Slab on Grade	Misc. wood framing	1	assembly	-1	20	2	
2,000 —	364	Foundation	Interior gypsum sheathing	1	layer	0.56		12	
1,000		89	Interior/exterior air film	1	layer	0.85			
o +	Construction	Annual Heating	TOTAL			22.6		364	4


EPS Structural Insulated Panel GWP Gas Emissions

9,000 -		
8,000 -		
7,000 -		
6,000 -		
5,000 -		
4,000 -		
3,000 -		Superstructure Wall
2,000 -	227	Slab on Grade
1,000 -		Foundation
0 -		96
	Construction	Annual Heating

10,000

MATERIAL	Thickness	Unit	R-factor	Weight (lbs.)	lbs. CO2e	lbs. CO2e/sf
Exterior composite siding	1	assembly	0.08		85	
(2) 7/16" OSB	1	assembly	1.25		30	
3 11/16" EPS Insulation	3.6875	inches	14.4	31	89	
Exterior gypsum sheathing	1	layer	0.56		12	
Misc. wood framing	1	assembly	-1	20	2	
Interior gypsum sheathing	1	layer	0.56		12	
Interior/exterior air film	1	layer	0.85			
TOTAL			16.7		230	2

XPS Structural Insulated Panel GWP Gas Emissions

MATERIAL	Thickness	Unit	R-factor	Weight (lbs.)	lbs. CO2e	lbs. CO2e/sf
Exterior composite siding	1	assembly	0.08		85	
(2) 7/16" OSB	1	assembly	1.25		30	
3 11/16" XPS Insulation	3.6875	inches	18.4	61	7375	
Exterior gypsum sheathing	1	layer	0.56		12	
Misc. wood framing	1	assembly	-1	20	2	
Interior gypsum sheathing	1	layer	0.56		12	
Interior/exterior air film	1	layer	0.85			
TOTAL			20.7		7516	75

Straw Bale Construction: GWP Gas Aspects

- Straw GWP is very small especially locally sourced
- Location of building greatly affects footprint
- Erection can be very low
- Small amounts of steel and wood
- Stucco usually cement
- Wide concrete footings

www.texastinyhomes.com

Straw Bale Construction: GWP Gas Emissions

9,000			MATERIAL	Thickness	Unit	R-factor	Weight (lbs.)	lbs. CO2e	lbs. CO2e/sf
8,000			Exterior composite siding	1	assembly	0.08		85	
7,000			Exterior CFMF hat channels	1	layer		40	72	
6,000			Straw Bales	18	inches	27	1050	11	
5,000			Baling ties and mesh	1	assembly		25	15	
4,000		Superstructure Wall	Timber framing	1	layer	-2	30	54	
3,000		Slab on Grade	Interior/exterior cement stucco	2	layers	0.4	1000	250	
2,000	486	Foundation	Interior/exterior air film	1	layer	0.85			
1,000		69	Thermal mass effect			2.6			
o +	Construction		TOTAL			29.0		486	5

10,000

Practical Take-Aways

- Watch your windows!
- Avoid XPS and closed-cell spray foam
- De-materialize as much as practical
- Consider wood for structural framing + studs
- Consider wood-framed windows
- Consider pre-manufactured components
- Minimize labor-intensive jobsite activities

Material-Specific Recommendations to Reduce CO₂-e Emissions

Oncrete

- Do not over-specify concrete strength
- Use SCMs as much as possible
- Minimize foundation concrete area

Masonry

- Specify CMU's with SCM and minimize Portland cement
- Specify SCM in grout, and avoid prescription-based mixes
- Consider alternative low-cement masonry units

Steel

- Consider salvaged or reuse of steel
- Specify steel produced in Electric Arc Furnaces, not BOF's
- Wood Consider its use where codes allow

LCA of DfD Structural System

Mark Webster

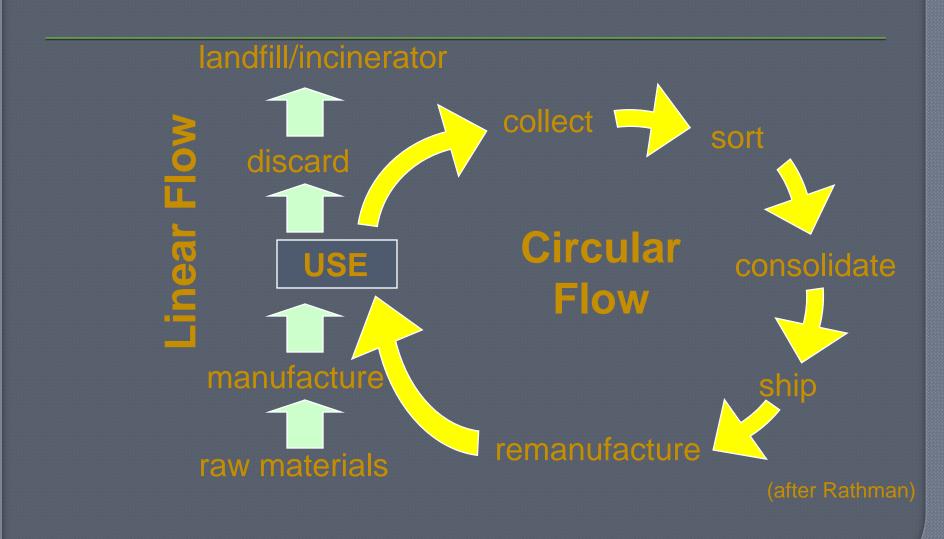
Engineering of Structures and Building Enclosures

What is DfD?

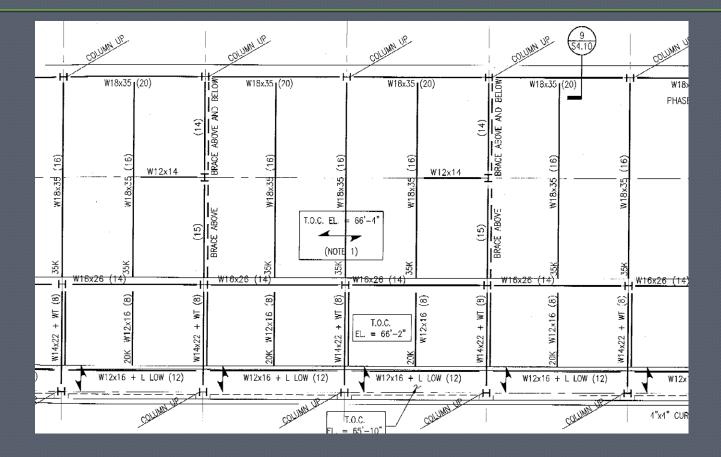
 Deconstruction is a demolition method where a structure is carefully and methodically disassembled so as to salvage as many components as possible.
 "Design for Deconstruction" is an approach

to new design that anticipates and facilitates the future deconstruction of the structure.

Why DfD?

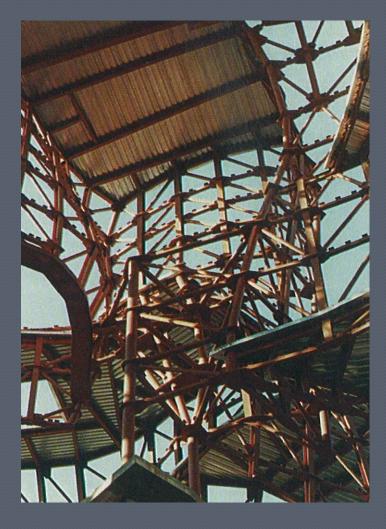

 Increase salvage and recycling rates, and building end-of-life value

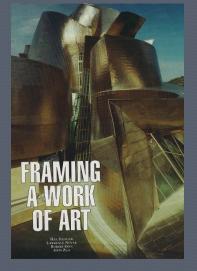
- Reduce consumption of raw materials ("close the materials loop")
- Reduce consumption of energy
- Reduce waste and landfill demand


What is DfD not?

 Although DfD an excellent strategy for reducing the carbon footprint of buildings (as we will see), it is *not* a strong climatechange mitigation strategy because the benefits of DfD occur in the long-term rather than the short-term.

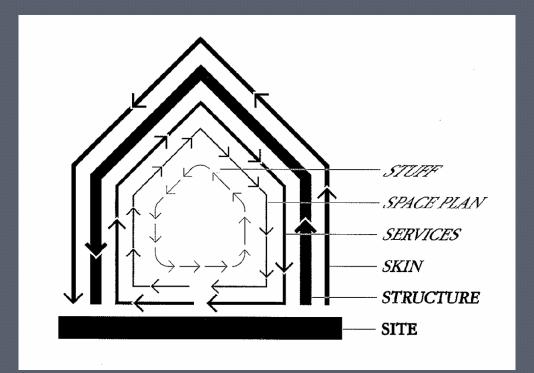
Closing the Materials Loop



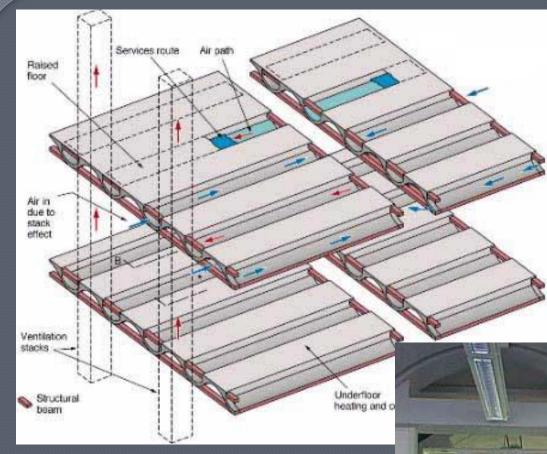

Simple, Regular Layout

This framing system has repeating bays with similar geometry, beam sizes, and connection types.

Simple, Regular Layout



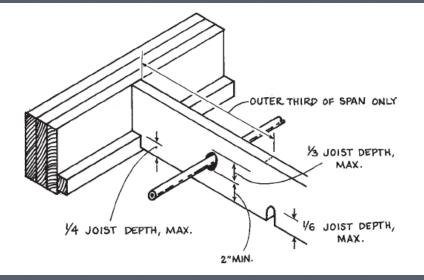
from "Framing a Work of Art," *Civil Engineering*, March 1998


This framing system has many unique pieces that will be impossible to reuse in a different building.

Layered Building Systems

from *How Buildings Learn*, by Stewart Brand (after Frank Duffy)

Building systems have different longevities. Keeping systems separate makes renovations easier, and also deconstruction.

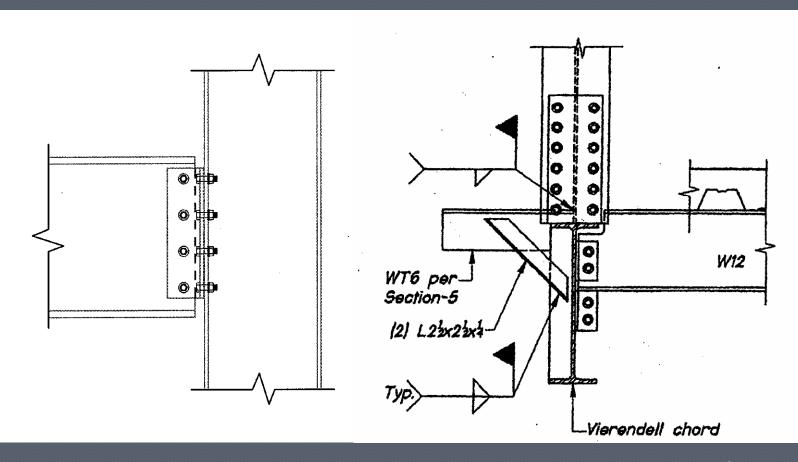


BRE: The Environmental Building

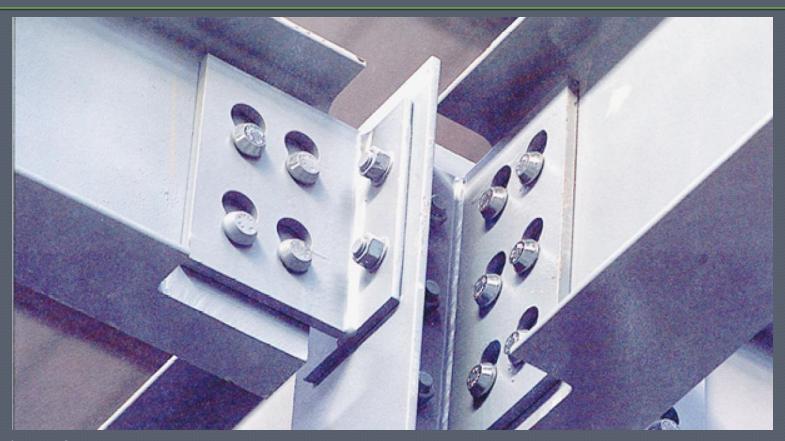
from http:// projects.bre.co.uk/

from http:// projects.bre.co.uk/

Layered Building Systems

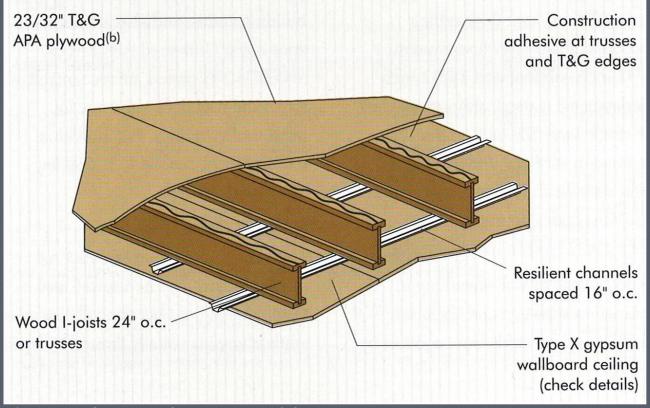

from *Details for Conventional Wood Frame Construction*, by the American Forest & Paper Association

from the Bensonwood web site, www.bensonwood.com


Conventional Wood Framing Details vs. Bensonwood Open-Built® Floor System

Common Standard Shapes and Connections

Which connection would you rather take apart?

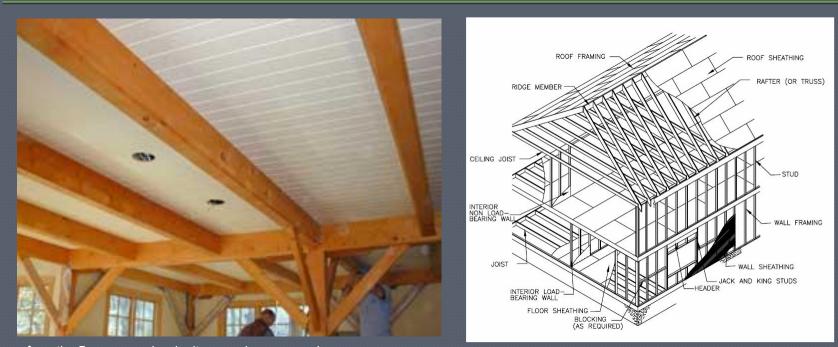

Common Standard Shapes and Connections

from the Quicon web site, www.quicon.com

The Quicon[™] connection system uses standard interlocking connections.

Removable Fasteners, Avoid Adhesives and Welds

from Design/Construction Guide: Residential & Commercial, by APA - The Engineered Wood Association


This glued plywood floor system will be virtually impossible to take apart. Use screws.

Removable Fasteners, Avoid Adhesives and Welds

Lindapter Clamped Connections

Few Large Members vs. Many Small Members

from the Bensonwood web site, www.bensonwood.com

from *Residential Structural Design Guide*, by the U.S. Dept. of Housing and Urban Development

Larger members are more robust and less subject to damage during use and deconstruction. Fewer pieces to handle will likely reduce deconstruction costs.

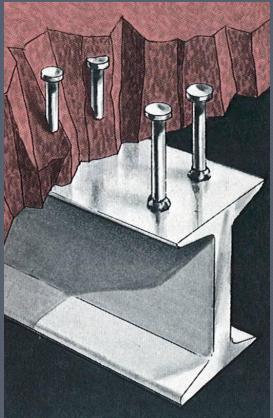
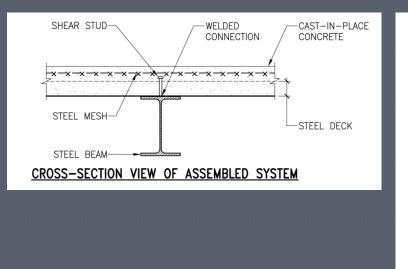
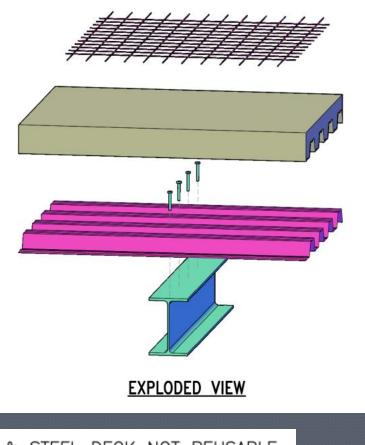

Salvaged Materials

photo by Mark D. Webster

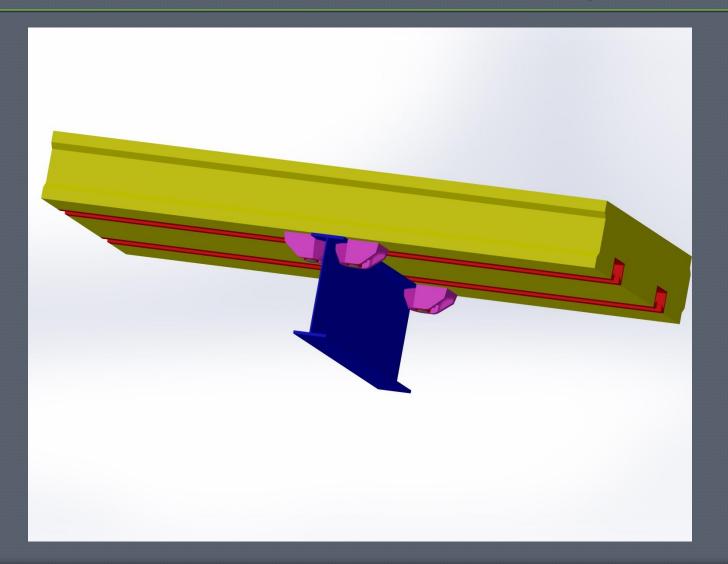
This vegetable market is constructed of salvaged timber, which will be reusable again at the end of the building's life.

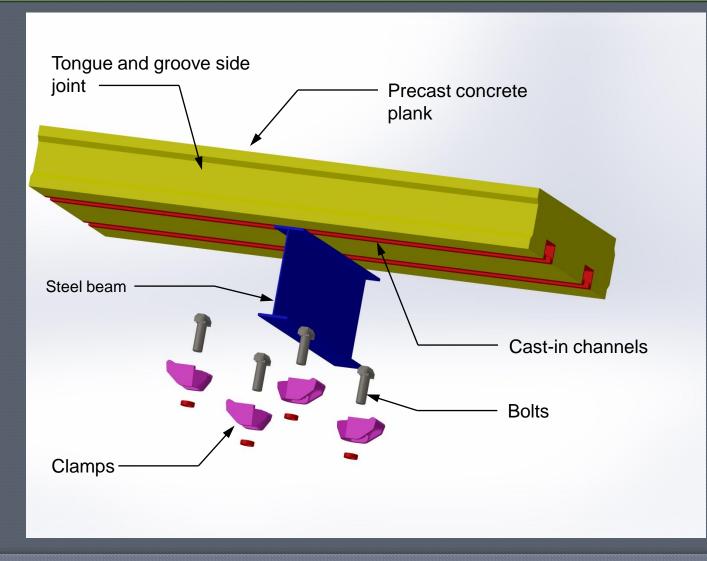
Avoid Most Composite Systems


from Murus Structural Insulating Panels Brochure

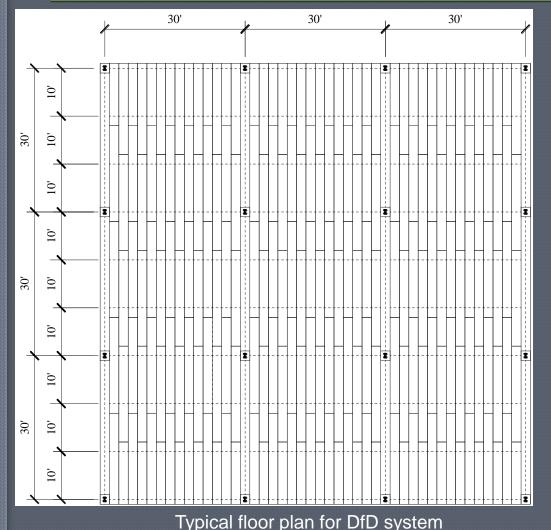

from *Stud Welding for Non-Residential Construction*, by Nelson Stud Welding

Composite systems typically increase deconstruction difficulty and reduce reuse options. Some composite systems may be reusable as assemblies.


Conventional Composite Slab



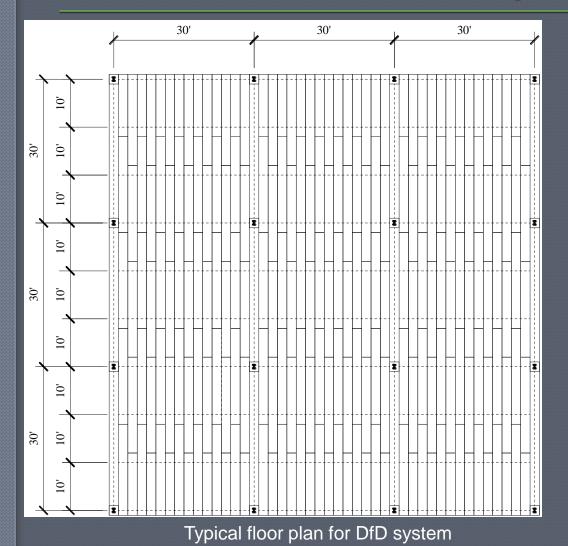
 STEEL MESH, CONCRETE, & STEEL DECK NOT REUSABLE
 STEEL BEAM <u>MAY</u> BE REUSABLE, BUT SHEAR STUDS MUST BE REMOVED


Deconstructable and Reusable Composite Slab

Deconstructable and Reusable Composite Slab

Deconstructable composite floor system

Staggering plank pattern

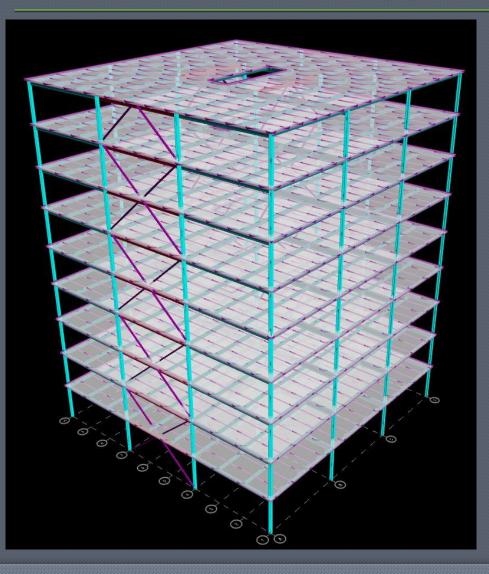

Why?

- Clamp connectors require planks being continuous over the steel beams.
- Enhanced localized stability of floor system

Benefits:

- Enables a two-plank strip to behave like a continuous beam by load transfer between the planks
- Adds flexibility to the floor plan

Deconstructable composite floor system


End-to-end connections:

 Located at the inflection points to reduce the load transfer between planks

Longitudinal rebar configuration in plank:

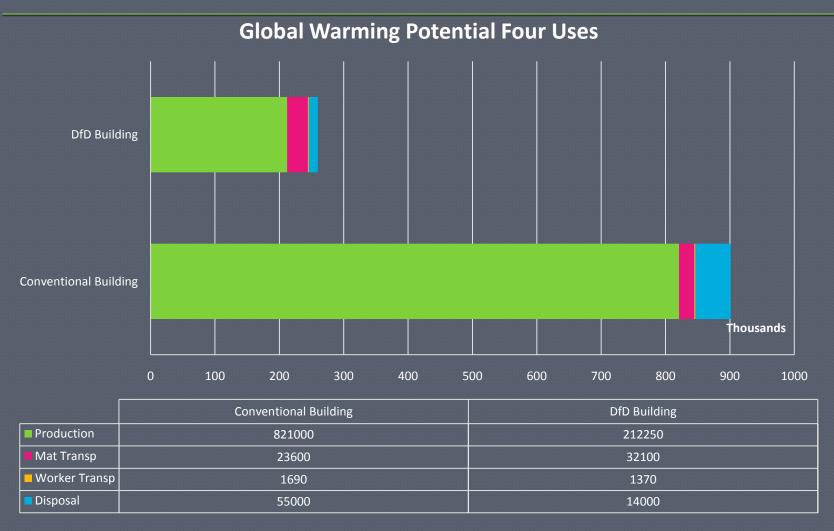
- Designed using twice the moment and shear obtained from continuous beam analysis
- The channels cannot be used as flexural reinforcements.

Archetype Office Building

- Nine Stories
- 30-Foot Bays
- Braced Frame Lateral System
- Steel Columns and Beams
- Conventional Composite Construction or Deconstructable Planks

LCA Analysis

- Comparison of conventional composite construction to DfD slab construction.
 Used Simapro LCA software.
- Used U.S. Ecoinvent 2.2 and European Life-Cycle Database for material and transportation LCIs.
- Used TRACI 2.1 for environmental impact assessment.
- Modelled material transportation impacts and construction-phase labor transportation impacts.
- Assumed DfD components could be reused three times.


LCA Analysis

 Assumed that material and labor transportation impacts are the same regardless of whether the DfD components are new or reused.

Preliminary LCA Results

Preliminary LCA Results

Conclusions

• Assuming the DfD system is reused three times, it reduces carbon emissions by 71% relative to conventional composite construction. • If reused only twice, carbon emissions are still reduced by 63%. If reused four times, carbon emissions are reduced by 76%.

Conclusions

- DfD requires a new mind-set for designers. We're not accustomed to thinking about the end-of-life (much less the after-life) of our building designs.
- DfD will be most successful for routine building development, such as low- to midrise commercial development and housing (which accounts for most construction). These buildings are the most likely to have regular, repeating floor plans, simple construction, and relatively short life-spans.

Concluding Thoughts on DfD

• DfD is attracting the attention of building designers in the North America and Europe. The Building Materials Reuse Association in the U.S. is promoting DfD, and excellent DfD guides have been published by the Canadian government, the Scottish government, and CIRIA, a British construction research and educational association.

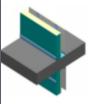
Structures and Thermal Bridging

Russ Miller-Johnson

What do we mean when we say Thermal Bridging

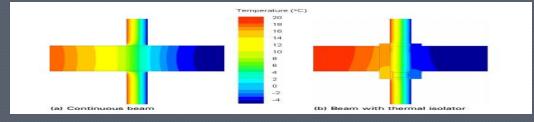
Highly Conductive Material that by-passes insulation layers
Areas of high heat transfer
Greatly effect the thermal performance of assemblies

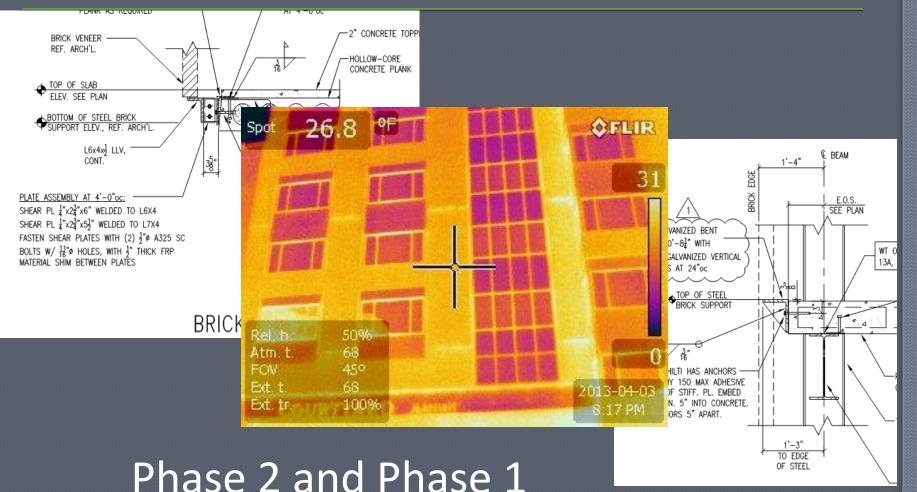
- BC Hydro, Building Envelope Thermal Bridging Guide, Overview Presentation, www.bchydo.com


and Condensation performance

Why do anything about Thermal Bridging

Total Losses for Structural Bridges

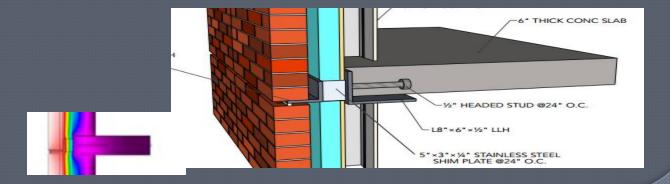

- "Thermal Performance of Building Envelope Details for Mid-and High-Rise Buildings," ASHRAE, TC 4.4, 1365-RP


Detail 6¹⁹ shows the significant effect that an un-insulated slab has on the heat loss through a wall assembly. For a 3.1 m (10 ft) high wall and exterior insulation in the range of R-5 to R-25, by adding a slab, the assembly thermal transmittance is increased 29-60% compared to the 'clear wall' values.

 Localized, Short Circuit Losses more important as thermal performance of the building envelope improves.

- "Avoidance of Thermal Bridging in Steel Construction," SCI Publication P380

Why do anything about Thermal Bridging



What do we do about Thermal Bridging

Thermal Break Design Strategies

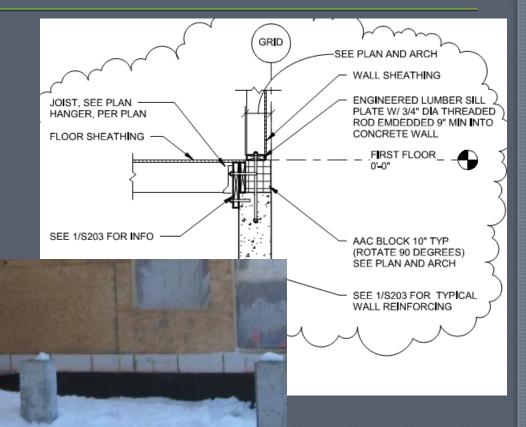
- 1. Utilize geometric separation when possible
- 2. Use discrete bridging elements
- Use less conductive materials, e.g. stainless steel at bridging elements instead of carbon
 Consider Manufactured Structural Thermal Breaks Assemblies

- "Thermal Bridging Solutions: Minimizing Structural Steel's Impact on Building Envelope Energy Transfer" a Supplement to "Modern Steel Construction" (AISC)

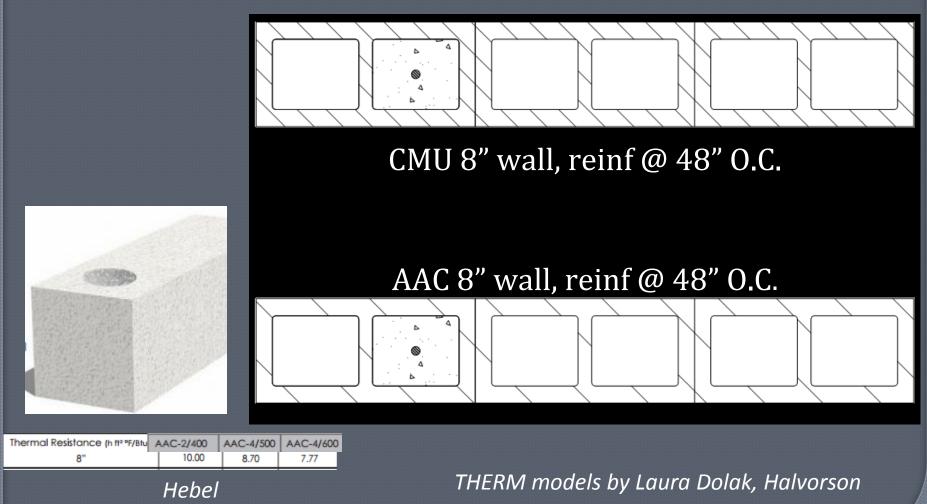
What is the weight of Thermal Bridging

Energy losses throughout the life of the building vs. effects of addressing

One pound of CO2 - NRDC

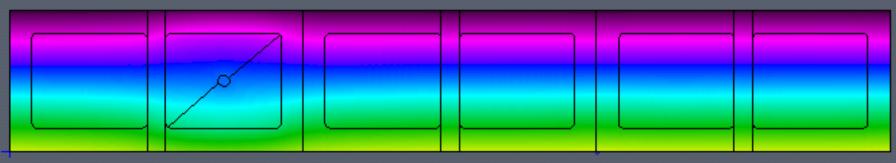

Insulation Material	R-value R/inch	Density Ib/ft³	Emb. E MJ/kg	Emb. Carbon kgCO2/kg	Emb. Carbon kgCO ₂ / ft ² •R	Blowing Agent (GWP)	Bl. Agent kg/kg foam	Blowing Agent GWP/ bd-ft	Lifetime GWP/ ft²•R
Cellulose (dense-pack)	3.7	3.0	2.1	0.106	0.0033	None	0	N/A	0.0033
Fiberglass batt	3.3	1.0	28	1.44	0.0165	None	0	N/A	0.0165
Rigid mineral wool	4.0	4.0	17	1.2	0.0455	None	0	N/A	0.0455
Polyisocyanurate	6.0	1.5	72	3.0	0.0284	Pentane (GWP=7)	0.05	0.02	0.0317
Spray polyure- thane foam (SPF) – closed-cell (HFC-blown)	6.0	2.0	72	3.0	0.0379	HFC-245fa (GWP=1,030)	0.11	8.68	1.48
SPF – closed-cell (water-blown)	5.0	2.0	72	3.0	0.0455	Water (CO ₂) (GWP=1)	0	0	0.0455
SPF – open-cell (water-blown)	3.7	0.5	72	3.0	0.0154	Water (CO ₂) (GWP=1)	0	0	0.0154
Expanded polystyrene (EPS)	3.9	1.0	89	2.5	0.0307	Pentane (GWP=7)	0.06	0.02	0.036
Extruded polystyrene (XPS)	5.0	2.0	89	2.5	0.0379	HFC-134a ¹ (GWP=1,430)	0.08	8.67	1.77

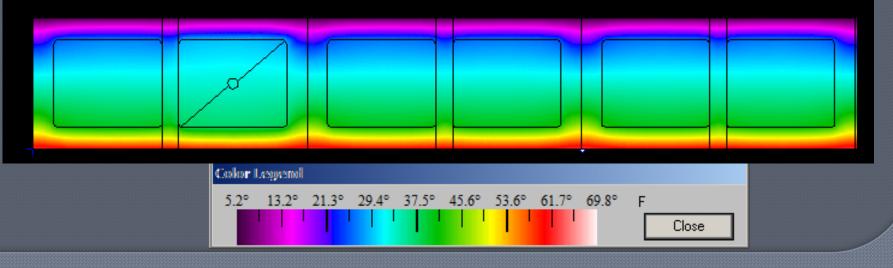
1. XPS manufacturers have not divulged their post-HCFC blowing agent, and MSDS data have not been updated. The blowing agent is assumed here to be HFC-134a.


Carbon Count - Building Green

Masonry – AAC Structural Thermal Break

AAC Insulated Load-Bearing Sill for 4- story structure




ASCE SEI Sustainability Committee, Thermal Bridging Working Group

Masonry – CMU & AAC

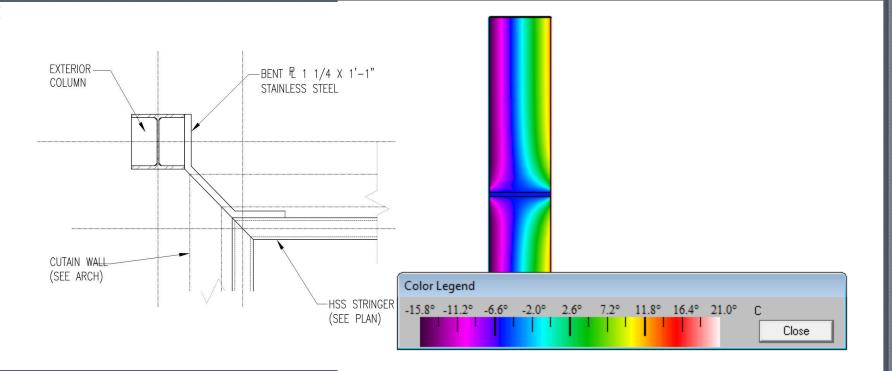
CMU 8" wall, reinf @ 48" O.C. R=2.32 h ft² °F / BTU

AAC 8" wall, reinf @ 48" O.C. R=5.26 h ft² °F / BTU

LCA Comparison Masonry – CMU & AAC

Masonry – Alternatives

				nft ² °F) a Ni Block \	
Stretch Cores E	이 문화 영화 관계	Cores EPS Ins		Interior Cores	
U	R	U	R	U	R
0.151	6.6	0.051	19.7	0.087	11.5
0.164	6.1	0.052	19.2	0.091	11.0
0.172	5.8	0.053	18.9	0.093	10.7
0.180	5.6	0.054	18.7	0.096	10.5
0.189	5.3	0.054	18.4	0.098	10.2
0.199	5.0	0.055	18.1	0.101	9.9


Proprietary Insulated CMU or Blended Insulative Materials

Steel – Stainless Structural Thermal Break

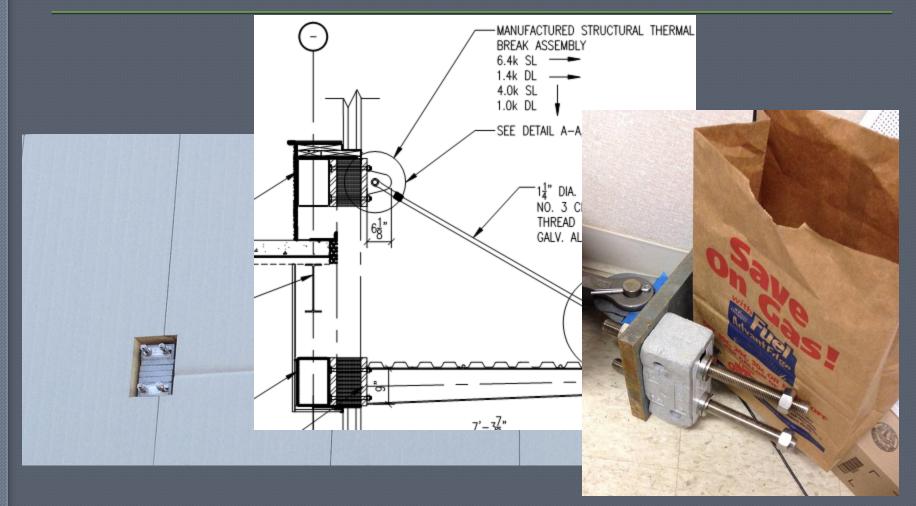
Stainless Steel Connection through Envelope

Steel – Stainless & Carbon

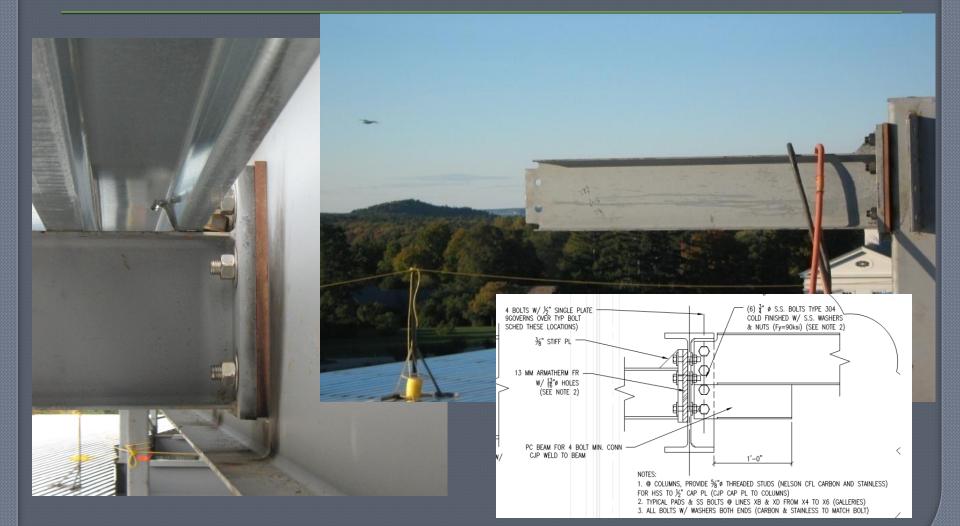
- Carbon Steel or Stainless Steel
- Effect on Energy Model using proscriptive assembly values

Steel – Stainless & Carbon

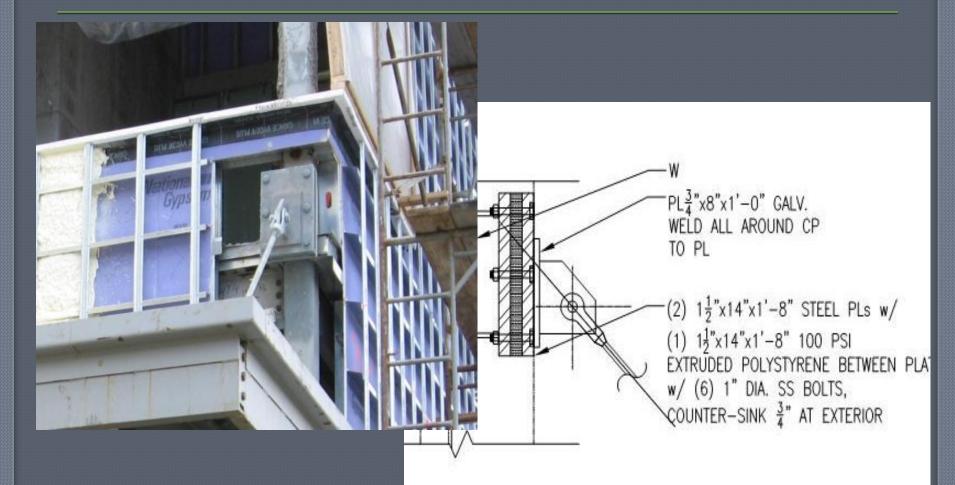
Cross Section Element		Conductivity [W/mK]	-1 1	R [m ^² K/W] (Depth/Cond.)	R{US}
1	Insulation at Curtain Wall Panel (Extruded Poly only)	0.033	0.102	3.091	17.618


Cross Section Element	Material	Keff [W/mK]		R equiv [m ^² K/W]	R{US}
2	Insulation at Curtain Wall Panel w/ SS	0.049	0.102	2.082	11.865

Cross Section Element	Material	Keff [W/mK]		R equiv [m ² K/W}	R{US}	· · · ·	"F x K"	Sum "Keff"	
3	Insulation at Curtain Wall Panel w/ Carbon Steel	0.090	0.102	1.133	6.460	[,``(/mK] "K"			
	1 14.300 2.016								
Ref	: THERM Manual; Non Continuous Thermal Bridge Elem	ور ۱	0.033	0.033	0.049				


Materials	Area [m2]		Conductivity [W/mK] "K"	"F x K"	Sum "Keff"
CS Plate [1.25x13 in ²]	0.010	0.001	51.000	0.057	
Tributary Curtain wall panel [4x25 ft2]	9.290	0.999	0.033	0.033	0.090

Assess Non-Continuous Thermal Bridge Elements
 Effective Conductivity by "Weight" @ -32% w/ SS & -63% w/ CS (Relative comp. only)


LCA Comparison Steel – Stainless & Carbon

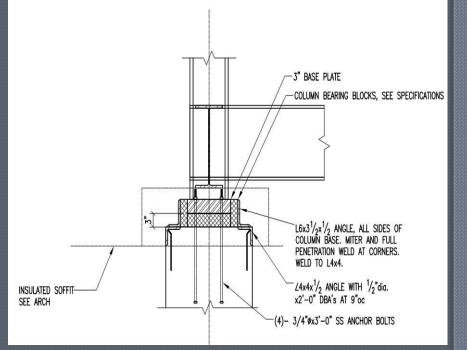
Performance Specified Connection (MSTBA)

Performance Specified Connection (MSTBA)

Designed Connections

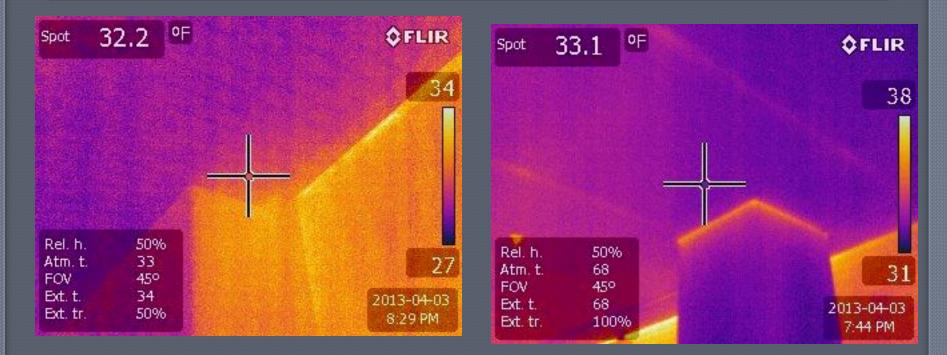
Less Conductive Framing

Insulated Connection Structural Thermal Break


Uninsulated Connection & Insulated Enclosure

Insulated Connection & Insulated Enclosure

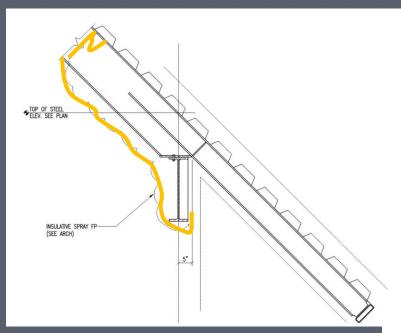
Insulated & Uninsulated Column Base Connection



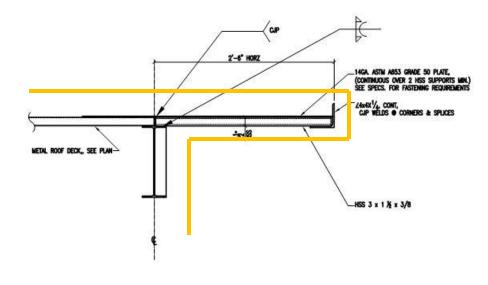
Uninsulated Connection

Insulated Connection

Insulated & Uninsulated Column Base Connection

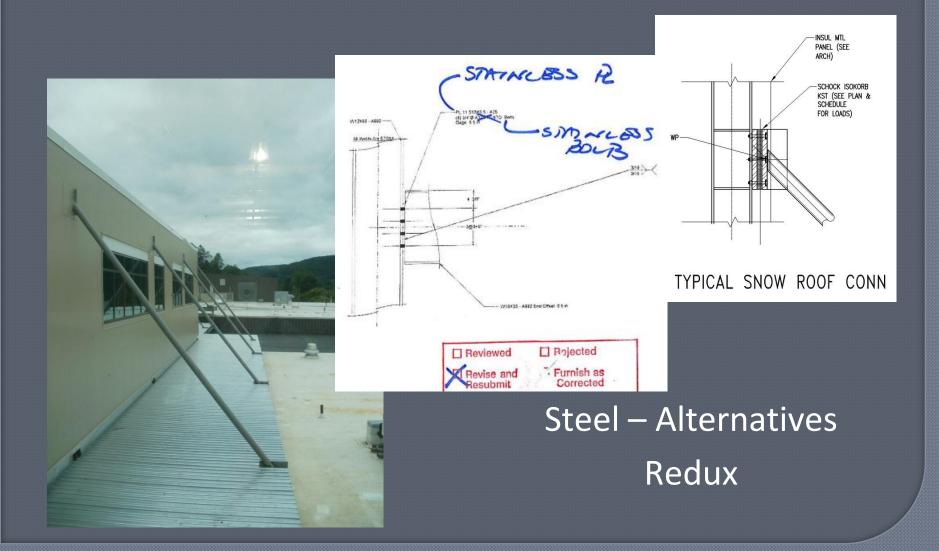


Uninsulated Connection


Insulated Connection

LCA Comparison Insulated & Uninsulated Connection

Insulation - Alternatives



Insulation around framing on outside

Insulation for portion of framing on inside

Insulation - Alternatives

Thermal Bridging in Cladding Systems

Kara Peterman

Project Team

Northeastern University

Jerome F. Hajjar, Ph.D., P.E., Professor and Chair: Structural engineering professor; analysis, testing, and design of steel and composite steel/concrete structures; member of the AISC Committee on Specifications and the RCSC Committee on Specifications

Kara Peterman, Ph.D.: Post-Doctoral Research Associate, Department of Civil and Environmental Engineering

Klepper, Hahn & Hyatt

James D'Aloisio, P.E., SECB, LEED AP BD+C: Principal: Structural engineer, chair of ASCE/SEI Technical Committee on Sustainability, member, Thermal Bridging Working Group; co-author of AISC Modern Steel Construction article on Thermal Bridging Solutions, March 2012

Simpson Gumpertz & Heger Inc.

Mark D. Webster, P.E., LEED AP: Senior Staff II – Structures: Structural engineer, founding member of the ASCE/SEI Technical Committee on Sustainability, chair of Carbon Working Group; past-chair of the LEED Materials and Resources Technical Advisory Group

Project Team

Simpson Gumpertz & Heger Inc. (continued)

James C. Parker, S.E., Senior Principal: Structural engineer, author of AISC Design Guide 22 on *Façade* Attachments to Steel Frame Buildings

Mehdi S. Zarghamee, Ph.D., P.E., Senior Principal : Structural engineer, project coordinator for the development of draft ASCE standard for LRFD design of pultruded fiber-reinforced polymeric structures

Sean M. O'Brien, P.E., LEED AP, Associate Principal: Thermal modeling and energy expert; voting member and program chair, ASHRAE Technical Committee 4.4 – Building Materials and Building Envelope Performance

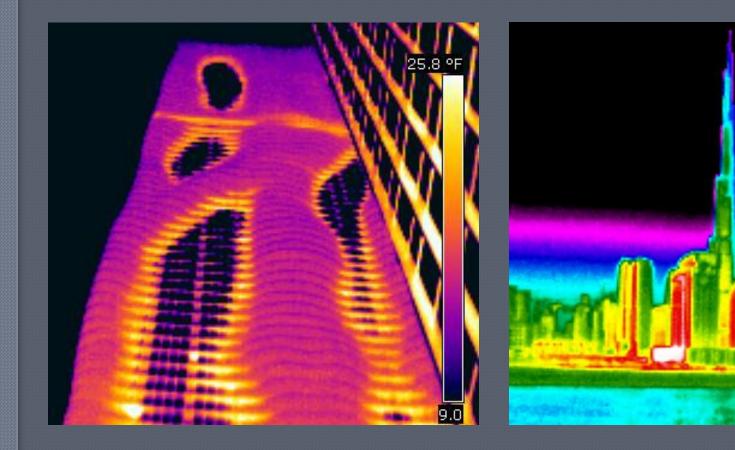
Outline

- What is a thermal bridge? Thermal break?
- Output Common thermal bridges in steel structures
- Mitigation strategies
- Thermal performance
- Experimental test program
- Future work and conclusions

Thermal Bridges

 Structural elements that span the building envelope result in heat transfer between building interior and exterior

• This is especially true with steel structural elements


Thermal Bridges

Aqua Tower, Chicago

Burj Khalifa, Dubai

40.7 °C

21.8

Thermal Breaks

 Thermal bridges must be physically broken to prevent energy loss → thermal breaks
 Thermal breaks involve splicing the steel member and inserting a thermally improved material or system

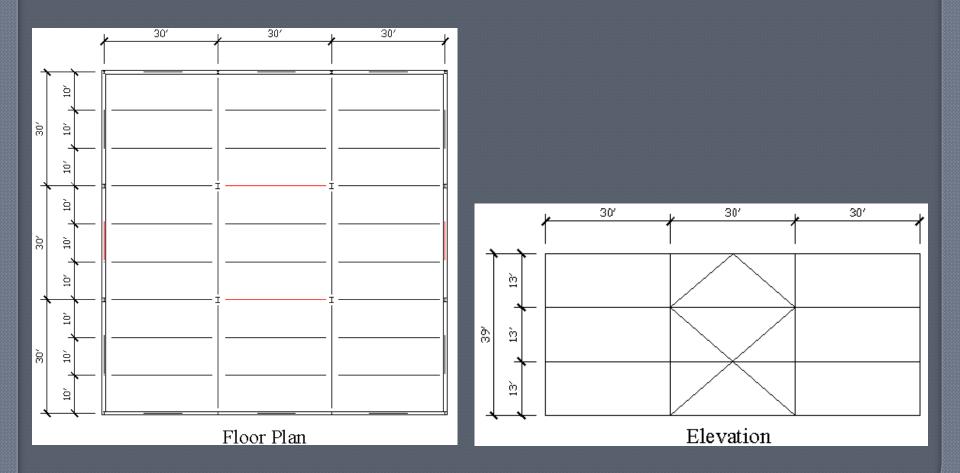
These breaks must also be effective at load transfer

Outline

- What is a thermal bridge? Thermal break?
- Our Common thermal bridges in steel structures
- Mitigation strategies
- Thermal performance
- Experimental test program
- Future work and conclusions

Archetype Building

General information:

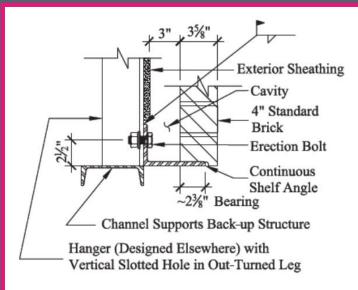

• Location:

- Los Angeles: exposure type B (wind load); soil property D (seismic load)
- Boston: exposure type B (wind load); soil property B (seismic load)
- Structural configuration: 3 bays by 3 bays; 13' story height; special concentrically braced frame (SCBF)
- Material properties: structural steel: A992; Stud: 3/4 in.; concrete: 4 ksi

Parameters:

- Bay width: 30' x 30' and 20' x 20'
- Stories: 3 stories(high gravity)and 9 stories(low gravity)
- Concrete plank thickness: 6 inch and 8 inch
- Systems: composite system using shear studs
- Provisions:
- ASCE 7-10 (*Minimum Design Loads for Buildings and Other Structures*)
- AISC 360-10 (Specification for Structural Steel Buildings)
- AISC 341-10 (Seismic Provisions for Structural Steel Buildings)

Archetype Building



Archetypal Thermal Bridges

• Shelf angles:

- Slab-supported
- Kicker-supported

Supports brick veneer – deflection limited

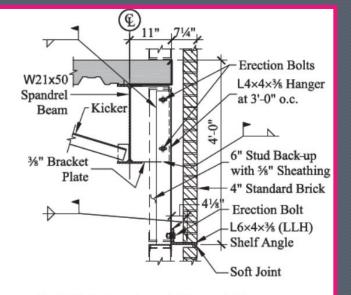
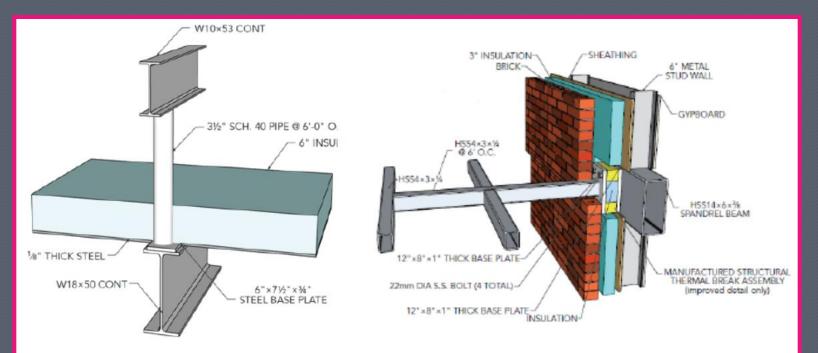



Fig. 7-17. Section of spandrel beam with hanger system.

Archetypal Thermal Bridges

• Beams and cantilevers:

- Roof posts
- Canopy beams

Mitigation Strategies

 Add a thermally improved shim (FRP, steel foam, stainless steel)

Takes advantage of intermittent spacing

Easy to install

Structurally promising

 Replace structural steel member with thermally improved member (FRP)

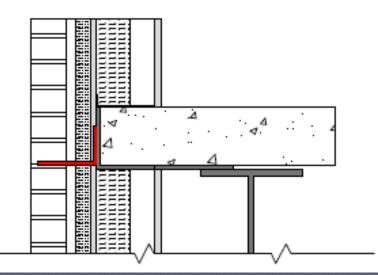
Available member sizes not large enough

May not be structurally effective for these applications
 Use a manufactured thermal break assembly

Challenges

Maintain structural integrity

- Monotonic and cyclic loads
- Creep performance
- Connection performance
- Performance under elevated temperatures
 Field adjustability
 - Must be able to be installed in the field
 - Adjustable according to construction
- Geometric constraints
- Thermally effective

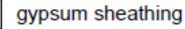

Challenges

 FRP-to-steel connections have not been validated in the experimental literature

 FRP-to-FRP and FRP-to-Steel connections are not clearly approved for structural use in national building code specifications

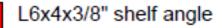
Proposed Thermal Breaks

UNMITIGATED - CLIMATE ZONE 1

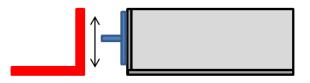


brick veneer

mineral wool insulation

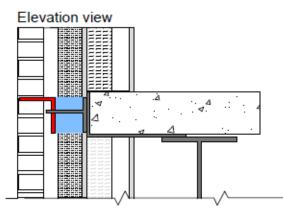

fiberglass batt insulation

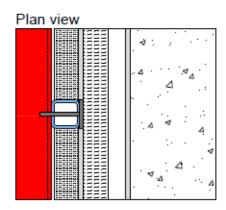
carbon steel

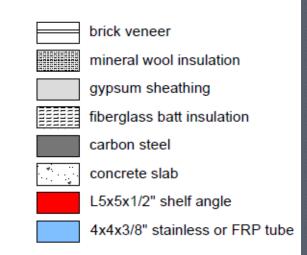

concrete slab

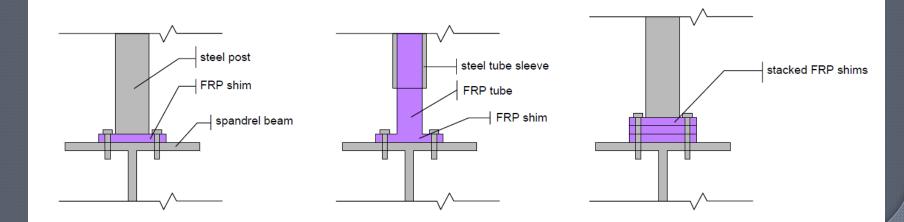
Original detail:

Proposed detail:

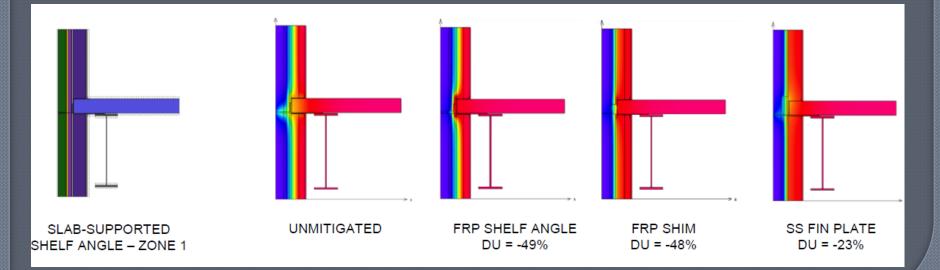



Angle height is adjustable due to long slotted holes


Additional plate with stud pre-welded can be field-adjusted on slab Shelf angle has standard holes


Proposed Thermal Breaks

TUBE SHIM MITIGATION - CLIMATE ZONE 7

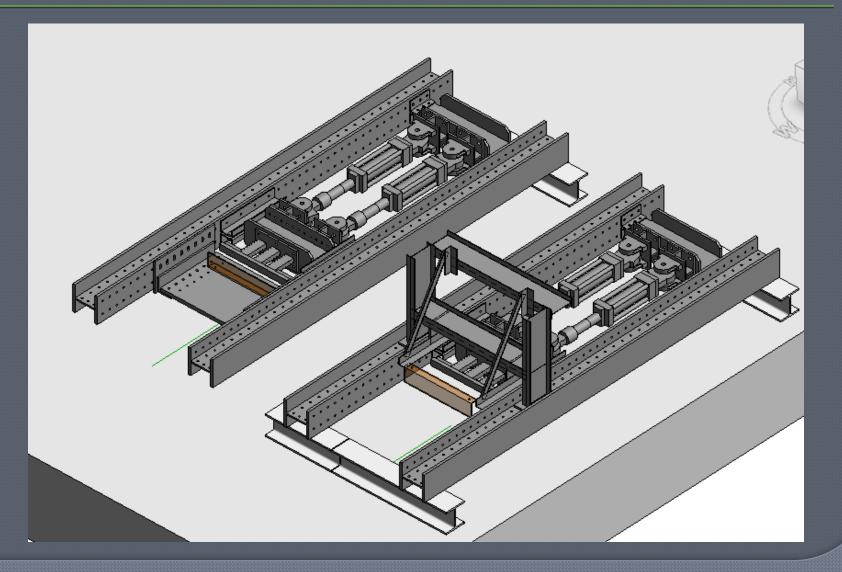


Outline

- What is a thermal bridge? Thermal break?
- Common thermal bridges in steel structures
- Mitigation strategies
- Thermal performance
- Experimental test program
- Future work and conclusions

Thermal Results

Preliminary thermal models demonstrate efficacy in proposed solutions
But how much improvement is good enough?
Structural testing still necessary.



Shelf Angle Testing

Test Name	Mitigation	Zone	Connection	Shelf Angle	Loading	Note
U1	unmitigated	1	weld	L6x4x3/8	Monotonic	_
U2	unmitigated	7	weld	L8x4x1/2	Monotonic	-
U3	unmitigated	7	A325 bolt	L8x4x1/2	Monotonic	-
U4	unmitigated	7	AP	L8x4x1/2	Monotonic	-
S1	FRP shim - vinylester	1	AP	L4x4x3/8	Monotonic	2 1/8" shim*
S2	FRP shim - vinylester	7	AP	L5x5x1/2	Monotonic	3 5/8" shim
S3	FRP shim - proprietary product 1	1	AP	L4x4x3/8	Monotonic	2 1/8" shim
S 4	FRP shim - proprietary product 1	7	AP	L5x5x1/2	Monotonic	3 5/8" shim
S5	FRP shim - proprietary product 2	1	AP	L4x4x3/8	Monotonic	2 1/8" shim
S6	FRP shim - proprietary product 2	7	AP	L5x5x1/2	Monotonic	3 5/8" shim
SF1	steel foam shim	1	AP	L4x4x1/2	Monotonic	2" shim
SF2	steel foam shim	7	AP	L4x4x3/8	Monotonic	3" shim
AS1	FRP angle with plate stiffeners	1	AP	L6x4x1/2	Monotonic	with 1/2" plate stiffeners
AS2	FRP angle with plate stiffeners	7	AP	trimmed L5x10x3/8	Monotonic	with 1/2" plate stiffeners
T1	stainless steel tube	7	AP	L5x5x1/2	Monotonic	stainless 4x4x3/8
T2	FRP tube	7	AP	L5x5x1/2	Monotonic	FRP 4x4x3/8

*shims greater that 1 inch thickness are comprised of thinner shims adhered together with Pliogrip adhesive (3 inch shim = 3x(1 inch) shims)

Shelf Angle Tests

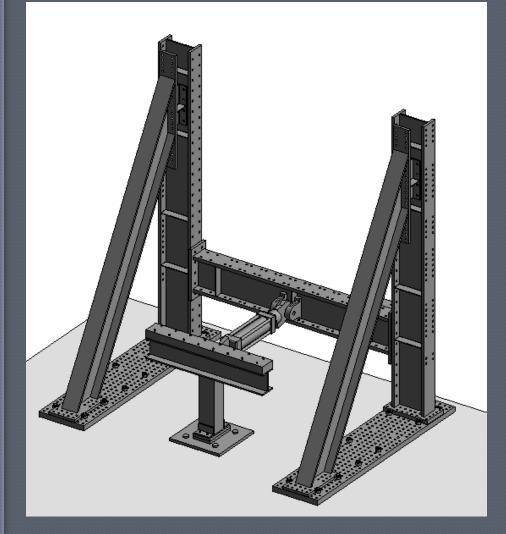
Shelf Angle Tests

DFOF

SHELF ANGLE SPECIMEN (BOLTED 4' oc TO STEEL PLATE)

STEEL PLATE TO SIMULATE CONCRETE SLAB

CONNECTION TO TEST RIG


BUILT-UP SECTION FOR LOAD DISTRIBUTION AND APPLICATION

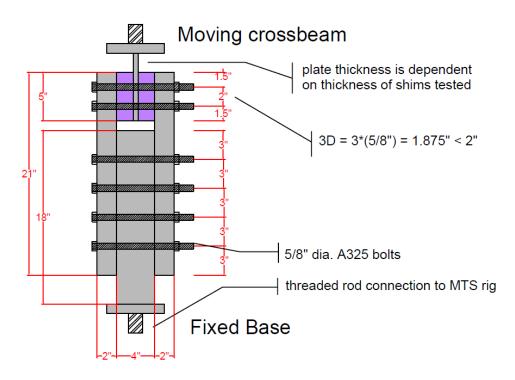
Beam and Cantilever Tests

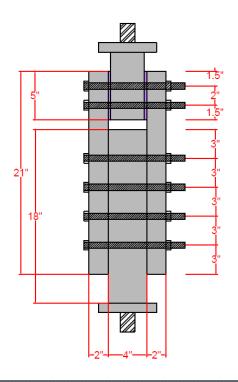
Test Name	Mitigation	Zone	Connection	Loading	Note
U1	unmitigated	1	weld	eccentric monotonic	-
U2	unmitigated	7	weld	eccentric monotonic	-
U3	unmitigated	7	bolt	eccentric monotonic	-
U4	unmitigated	7	AP	eccentric monotonic	-
S1	FRP shim - vinylester	1	AP	eccentric monotonic	3" shim*
S2	FRP shim - vinylester	7	AP	eccentric monotonic	6" shim
S 3	FRP shim - Fabreeka TIM	1	AP	eccentric monotonic	3" shim
S 4	FRP shim - Fabreeka TIM	7	AP	eccentric monotonic	6" shim
S5	FRP shim - Armatherm	1	AP	eccentric monotonic	3" shim
S 6	FRP shim - Armatherm	7	AP	eccentric monotonic	6" shim
SF1	steel foam shim	1	AP	eccentric monotonic	3" shim
SF2	steel foam shim	7	AP	eccentric monotonic	6" shim
AS1	FRP tube with steel tube sleeve	1	AP	eccentric monotonic	with 1/2" plate
AS2	FRP tube with steel tube sleeve	7	AP	eccentric monotonic	with 1/2" plate
MTBA	manufactured assembly	1	bolt	eccentric monotonic	-
U1	unmitigated	1	weld	cyclic	-
U2	unmitigated	7	weld	cyclic	-
U3	unmitigated	7	bolt	cyclic	-
U4	unmitigated	7	AP	cyclic	-
S 1	FRP shim - vinylester	1	AP	cyclic	3" shim*
S2	FRP shim - vinylester	7	AP	cyclic	6" shim
S 3	FRP shim - Fabreeka TIM	1	AP	cyclic	3" shim
S 4	FRP shim - Fabreeka TIM	7	AP	cyclic	6" shim
S5	FRP shim - Armatherm	1	AP	cyclic	3" shim
S 6	FRP shim - Armatherm	7	AP	cyclic	6" shim
SF1	steel foam shim	1	AP	cyclic	3" shim
SF2	steel foam shim	7	AP	cyclic	6" shim
AS1	FRP tube with steel tube sleeve	1	AP	cyclic	with 1/2" plate
AS2	FRP tube with steel tube sleeve	7	AP	cyclic	with 1/2" plate
MTBA	manufactured assembly	1	bolt	cyclic	-

*shims > than 1" thickness are comprised of thinner shims adhered together with Pliogrip adhesive (3" shim = 3x(1") shims)

Beam & Cantilever Test

Cantilever test with dead weight as axial loads for roof posts
200 k actuator
Cyclic, monotonic
Specimens 4' long


Connection Testing


Specimen	Туре	Adhesive	Shim Thickness	Bolt type
FRP1	polyurethane	-	1/4"	A325
FRP1-s	polyurethane	-	1/4"	A307
FRP2	vinylester	-	1/4"	A325
FRP2-s	vinylester	-	1/4"	A307
FRP9	phenolic	-	1/4"	A325
FRP9-s	phenolic	-	1/4"	A307
FRP4	vinylester	Х	2x1/2" multiple plies	A325
FRP4-s	vinylester	Х	2x1/2" multiple plies	A307
FRP5	vinylester	-	1"	A325
FRP5-s	vinylester	-	1"	A307
FRP6	vinylester	Х	2x1" multiple plies	A325
FRP6-s	vinylester	Х	2x1" multiple plies	A307
FRP7	vinylester	Х	2x1'' + 1/8'' multiple plies	A325
FRP7-s	vinylester	Х	2x1'' + 1/8'' multiple plies	A307
FRP8	vinylester	Х	3x1" multiple plies	A325
FRP8-s	vinylester	Х	3x1" multiple plies	A307
FRP10	Fabreeka	-	1/4"	A325
FRP10-s	Fabreeka	-	1/4"	A307
FRP11	Armatherm	-	1/4"	A325
FRP11-s	Armatherm	-	1/4"	A307
SF1	steel foam	-	2"	A325
SF2	steel foam	-	3"	A325
SF-FRP1	steel foam + FRP	Х	2" foam + 1/8" FRP	A325
SF-FRP2	steel foam +FRP	Х	3" foam + 5/8" FRP	A325

Connection Testing

THICK SHIMS (1.75") CASE

THIN SHIMS (0.25") CASE

Creep Testing

- Creep does the material experience strain at prolonged loads? 1000 hours? 8000 hours? 1 million hours?
- Currently developing test standard for FRP in flatwise compression
- Range of loads will be tested
 - 90% maximum capacity \rightarrow ~1 hour test
 - 40% maximum capacity \rightarrow ~1000 hour test
 - And everything in between!

Current & Future Work

Experimental test program (lots of testing!!)
Structural analysis of tested specimens
Condensation analysis
Form recommendations for design

This concludes The American Institute of Architects Continuing Education Systems Course

