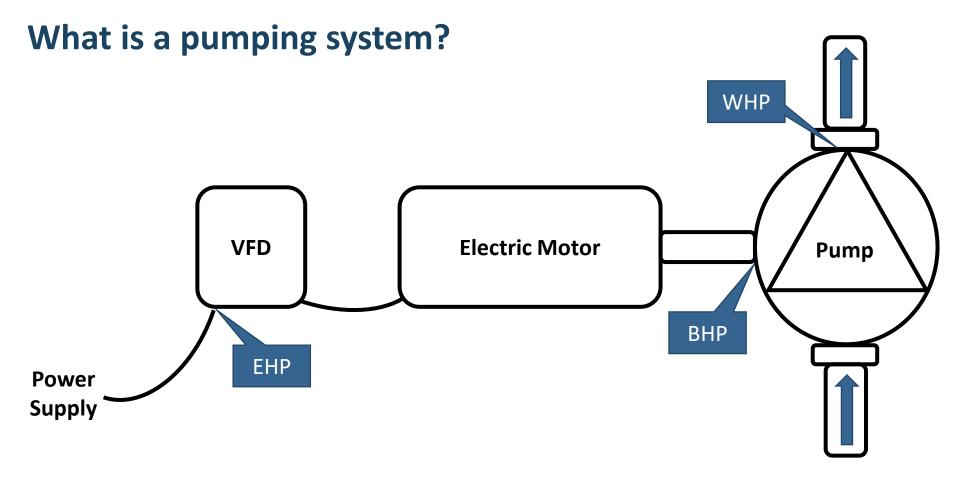
Upgrading Pumping Systems

L. Peter Korzeniewski Grundfos Pumps Building Services

be think innovate

Upgrading Pumping Systems

- Why upgrade, is it cost effective?
- What is a pumping system?
- How do pumping systems consume energy?
- Fully integrated pumping systems
- **Case 1** St. John Fisher College Hot Water Heating System
- Case 2 Renaissance New York Times Square Hotel Domestic Water System
- Wrap up



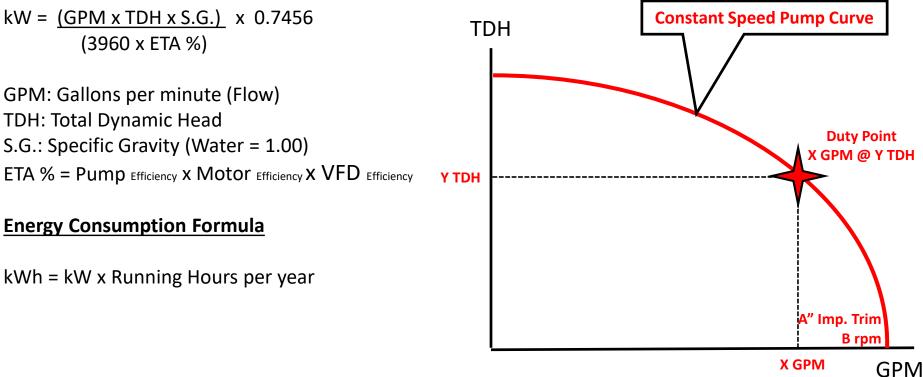
Define cost effective...

Project Payback Time (Years)

	No Brainer	Interesting Wait & See	Thanks but No Thanks	
0	2	Į	5	15

Components:

- A) **Pump** Pressure is applied to pumped product
- B) Motor Force is applied to pump impeller
- C) VFD/ VSD Dictates rotational speed of motor, allows for variation (based on Hz)


Efficiency loss ("slip") across each component in the system, ETA % measures system efficiency.

How is energy consumed?

Pump Theory for Static Condition

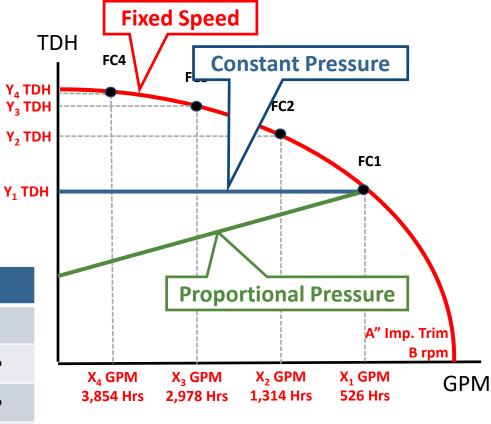
Power Consumption Formula

Example:

Given: X = 10 GPM and Y = 20 GPM, 5,000 Hours/ Year, ETA % = 65%, Pumping Water (S.G. = 1.00) kW = [(10 x 20 x 1.00)/(3960 x 0.65)] x 0.7456 = 0.058 kW kWh = 0.058 x 5,000 = 290 kWh/ Year (rounded)

How is energy consumed?

Pump Theory for Dynamic/Variable Load Condition


Power Consumption Formula

 $kW = (GPM \times TDH \times S.G.) \times 0.7456$ (3960 x ETA %)

Energy Consumption Formula

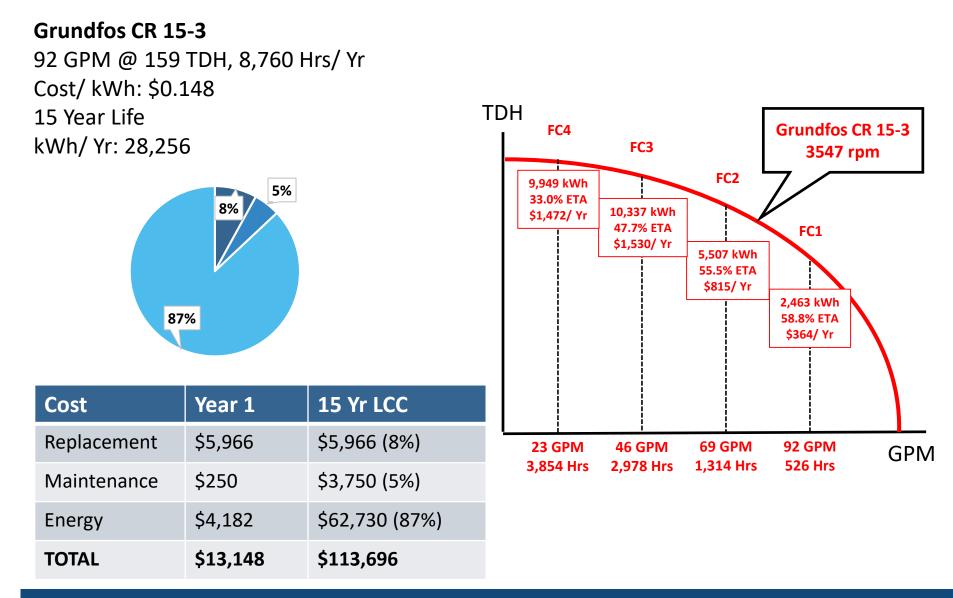
kWh = kW x Running Hours per year **FOR EACH FLOW CLASS BASED ON LOAD PROFILE** Assumed: 8,760 Hours/ Year (100% Runtime)

Flow Classes								
FC1 FC2 FC3 FC4								
% Load	100%	75%	50%	25%				
% Time	6%	15%	34%	44%				
Hours/ Yr	526	1,314	2,978	3,854				

Each Flow Class has its own ETA %

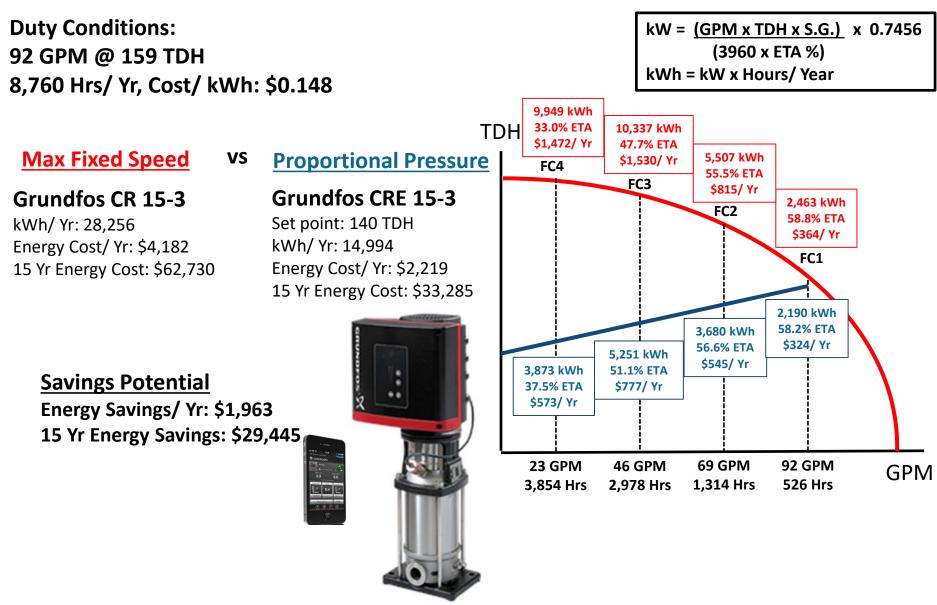
Here's the situation...

- Our facility has a pump sized to do 92 GPM @ 159 TDH, it runs 8,760 Hrs/ Yr, \$0.148 Cost/ kWh
- It's nearing the end of its useful life, needs to be replaced
- Pressure coming from the top to cut costs where possible
- We have a VFD laying around that we could use if needed (or general recomdation for a vfd)
- Would like to hook the pump system up to our Building Automation System
- Limited capital expenditure budget

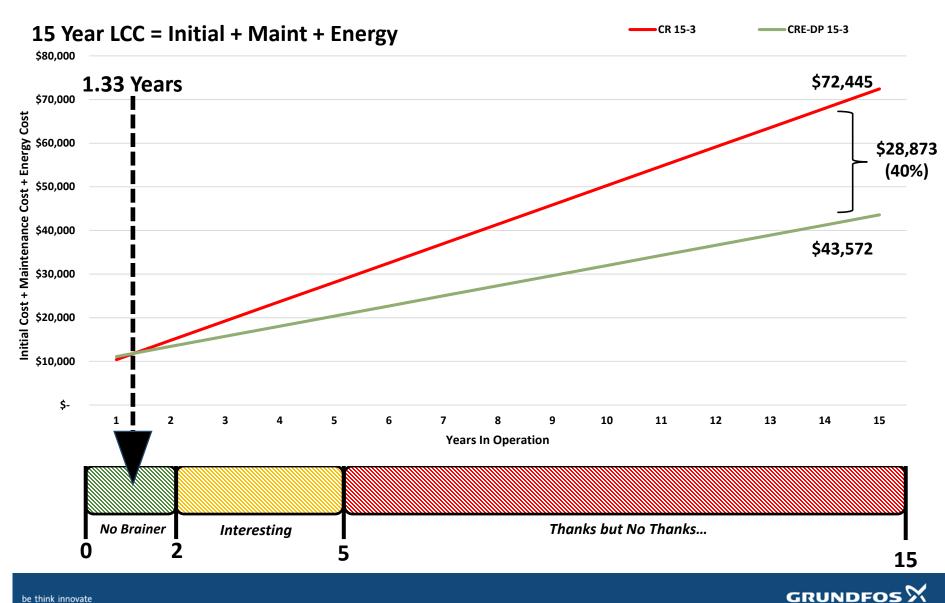

What do we do?

- 1. Just replace the old pump system on a "like-for-like" basis
- 2. Grab the VFD and hook it up to the newer version of the same pump
- 3. Look at a new integrated pump system

"Like-For-Like"	Integrated Pump System		
Grundfos CR 15-3 Cost: \$5,966	Grundfos CRE 15-3 Cost: \$8,785		
Fixed Speed Pump Premium Efficient Motor VFD Capable BAS Capable	Variable Speed Pump PMM/ECM Motor Integrated VFD BAS Capable		



What is the LCC of the existing pump system?



Integrated System – Proportional Pressure

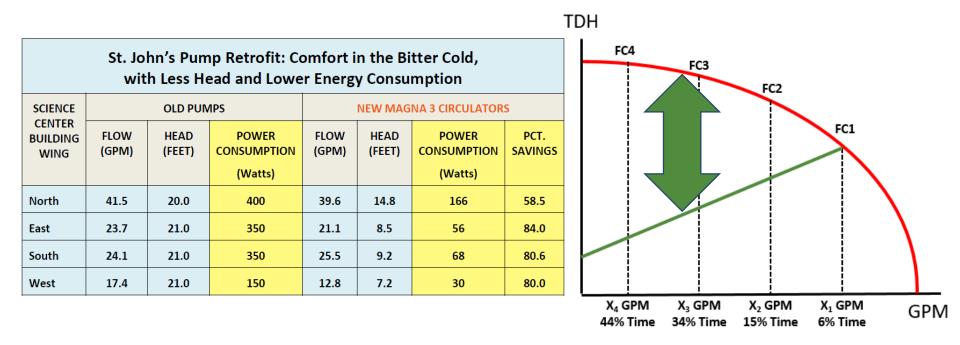
Integrated System – Proportional Pressure

Cost Effectiveness?

Case 1 – St. John Fisher College

Hot Water Heating System

- Pumping system retrofit
- Variable volume system?
- 6 pumps total
 - 2 primary boiler pumps
 - 4 secondary zone pumps
- Pump audit revealed design conditions
 - Zone 1 41.5gpm at 20' tdh
 - Zone 2 24.1gpm at 21' tdh
 - Zone 3 23.7gpm at 21' tdh
 - Zone 4 17.4gpm at 21' tdh
- Like for Like replacement?
- Justifications for retrofit:
 - Improved system performance
 - Increased comfort
 - Less wear and tear on system
 - Reduced operating costs

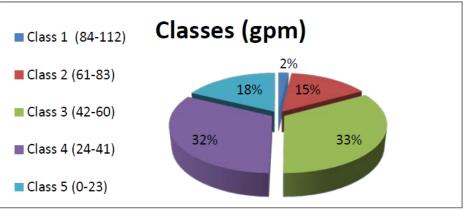


Integrated pumping system

St. John's Pump Retrofit: Comfort in the Bitter Cold, with Less Head and Lower Energy Consumption								
SCIENCE OLD PUMPS NEW MAGNA 3 CIRCULATORS							S	
CENTER BUILDING WING	FLOW HEAD (GPM) (FEET) (POWER CONSUMPTION (Watts)	FLOW (GPM)	HEAD (FEET)	POWER CONSUMPTION (Watts)	PCT. SAVINGS	
North	41.5	20.0	400	39.6	14.8	166	58.5	
East	23.7	21.0	350	21.1	8.5	56	84.0	
South	24.1	21.0	350	25.5	9.2	68	80.6	
West	17.4	21.0	150	12.8	7.2	30	80.0	

Integrated pumping system

Case 2 - Renaissance New York Times Square Hotel Domestic Water Booster System


Table 2 Pressure Profile

Pressure	Units	Design	Gauges	Pump Audit	
				Min	Max
Suction	psi	30	41	38	48
Discharge	psi	158	155	133	165
Boost	psi	133	114	91	119

Table 3 Flow Statistics

Flow	Units	Design	Audit	Scaled
Max	GPM	375	90	112
Average	GPM	-	34	42
Min	GPM	-	0	0

Figure 2 Flow Profile

Case 2 - Renaissance New York Times Square Hotel Domestic Water Booster System

Table 4 Operational Comparison

	Boost	Flow (GPM)				
	(FT)	1 Pump	1 Pump 2 Pumps 3 Pumps 4 Pum			
Design	307	0-125	126-250	251-375	-	
Hydro MPC-E 4CRE10-10 7.5HP 3x208V						
Proposed	274	0-61	62-104	105-148	149-264	
Operational Time	-	60%	35%	5%	Stand-by	

Table 5 Annual Energy Savings Potential

Grundfos Pump Audit							
Unit Existing Proposed Savings							
System Water Volume	Cubic Feet	2,966,479	2,966,479	-			
Energy Consumption	kWh	162,548	31,151	131,397			
Energy Cost	USD	\$34,135	\$6 <mark>,</mark> 542	\$27,593			
Savings	-	81 %					

Thank you!

