Electric vehicle overview

Building In The Age of Electric Vehicles

03-07-2017

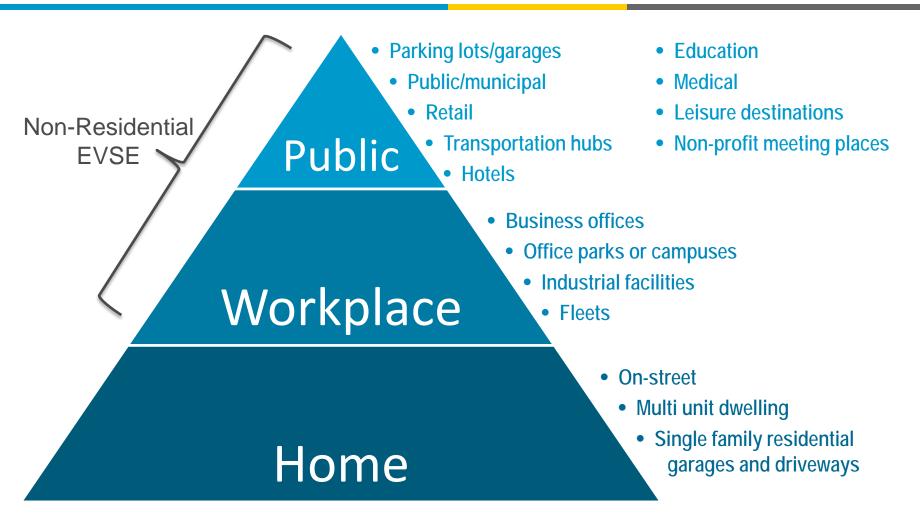
Stephen Russell

Department of Energy Resources
Massachusetts Clean Cities Coalition

EV Basics: Benefits and Considerations

Benefits

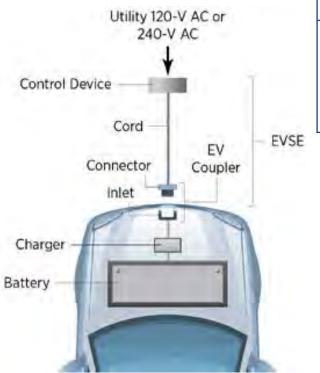
- Increased energy security
- Improved fuel economy
- Lower fuel costs
- Low or zero tailpipe emissions


Considerations

- Higher initial vehicle cost
- Limited infrastructure availability
- Battery life
- Reduced all-electric range

Image: NREL Image Gallery #28974

Infrastructure Settings



Non-residential EVSE increases the electric driving range for PEV owners and enables drivers without access to home charging to own PEVs.

Electric Vehicle Supply Equipment (EVSE) Overview

equipment needed to deliver electrical energy from an electricity source to a plug-in electric vehicle battery.

Charging Level	Vehicle Range Added per Charging Time and Power	Supply Power
AC Level 1	4 mi/hour @ 1.4kW	120VAC/20A
	6 mi/hour @ 1.9kW	(12-16A continuous)
AC Level 2	10 mi/hour @ 3.4kW	
	20 mi/hour @ 6.6kW	208/240VAC/20-100A (16-80A continuous)
	60 mi/hour @ 19.2 kW	
DC Fast Charging	24 mi/20minutes @24kW	208/480VAC 3-phase
	50 mi/20minutes @50kW	(input current proportional to output power;
	90 mi/20minutes @90kW	~20-400A AC)

Photo from Angela Costanzo, NREL

Photo from WSDOT

Installation Costs – Level 1

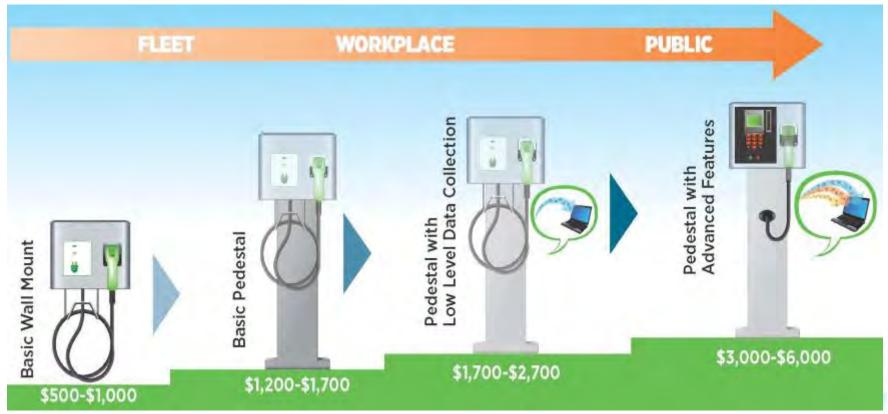
Level 1 Installation

\$0-\$3,000

Photo from Steve Russell

Main L1 Installation Cost Factors

- Offer an existing electrical outlet for drivers to plug in cord set (\$0)
- Install an electrical outlet or a wall mounted Level 1 EVSE (\$300-\$1,000)
- Install a pedestal Level 1 EVSE (\$1,000-\$3,000 assuming no major electrical work needed)


EVSE Unit Costs - Level 2

Level 2 EVSE Unit (single port)
\$400-\$6,500

Main L2 EVSE Cost Factors

- Mounting (wall/pedestal)
- Communications capabilities
- Advanced features

Ballpark Cost Ranges for Level 2 EVSE

EVSE Unit Costs - DC Fast Charging

DCFC EVSE Unit

\$10K-\$40K

Photo from Don Karner

Main DCFC EVSE Cost Factors

- Power output ranges from 24-250kW (commonly 50-60kW)
- Number of ports (may have multiple connector standards but only charge one vehicle at a time)
- Advanced features

Photo from Margaret Smith

DCFC Connectors SAEJ1772 CCS and CHAdeMO

Photo from Margaret Smith

Installation Costs – Connecting EVSE to Electrical Service

Simple/lower cost — run conduit along the wall a short distance from the electrical service to the EVSE

Complex/higher cost – trench or bore through concrete to run conduit a long distance from electrical service to EVSE

Trenching cost varies by location but in some areas the cost for digging the trench, laying conduit, then back-filling is:

- \$10-\$20/ft. for soil
- \$100-\$150/ft. for asphalt or concrete

Photo from NYSERDA

Photo from NYSERDA

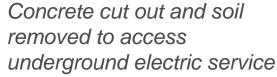


Photo from INL

Photo from INL

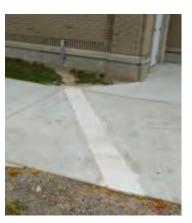


Photo from NYSERDA

Installation Costs – New Electrical Service or Upgrades

Photo from Don Karner

Photo from NYSERDA

3 Fundamental EVSE Electrical Needs

- 1. Sufficient electrical capacity from the utility connection to the electrical panel.
- 2. Sufficient electrical capacity at the panel.
- A dedicated circuit for each EVSE unit on the electrical panel (in most cases).

Consult with electrician and utility to determine if electrical work is needed and estimate cost.

- **Service upgrade** Increasing the electrical capacity from the utility to an existing electrical panel, e.g. new transformer. \$10,000-\$25,000 (WCEH).
- New electrical service Bringing electricity from the utility to a site that did not previously have electricity. \$3,500-\$9,500 (EV Project)
- Electrical panel work Replacing or upgrading the panel, re-working the panel to provide more breaker positions, or adding a sub-panel. Cost is very site specific. About 72% of Level 2 commercial installations required panel work (EPRI)

Tips for Minimizing EVSE Costs – EVSE Unit Selection

EVSE Unit Selection

- Minimum level of features needed
- Wall mounted EVSE unit (if possible)
- Dual port EVSE minimizes installation costs per charge port.
- Choose the quantity and level of EVSE units to fit within that available electrical capacity

Location

- Minimize the trenching/boring distance.
- Place the EVSE unit close to the electrical service
- Use signage to direct PEV drivers to the EVSE unit
- Choose a location that already has space on the electrical panel with a dedicated circuit

Long Term Planning

- Discuss electrical service needs and charges with your utility
- Avoid demand charges
- Upgrade your electrical service for your anticipated long term EVSE load and run conduit to your anticipated future EVSE locations.
- Consider the electricity infrastructure for EVSE when building a new facility

The Future for the Built Environment - Residential

Draft/suggested EV-Ready Regulations

• N1104.2 (R404.2) Electric Vehicle Service Equipment (EVSE) Ready (Mandatory). In accordance with 527 CMR and this section, at least one minimum 40-ampere branch circuit shall be provided to garages and/or the exterior of the building to accommodate a future dedicated Society of Automotive Engineers (SAE) standard J1772-approved Level 2 EVSE. The circuits shall have no other outlets. The service panel shall provide sufficient capacity and space to accommodate the circuit and over-current protective device. A permanent and visible label stating "EV READY" shall be posted in a conspicuous place at both the service panel and the circuit termination point.

Type of Building	Number of spaces
Single-family dwelling:	1
Two-family dwelling:	1
3 or more unit building:	1 per two units

One Final thought - Resiliency

Using the batteries in cars and Buses for:

Vehicle to grid (V2G) and Vehicle to Building (V2B)

- Managed charging
- Use battery storage to offset demand charges
- Charge battery with energy from renewables (solar or wind)
- Participate in energy markets

References and Resources

- AFDC Vehicle Cost Calculator (http://www.afdc.energy.gov/calc/)
- AFDC EV Emissions page (http://www.afdc.energy.gov/vehicles/electric_emissions.php)
- AFDC Alternative Fuel and Advanced Vehicle Search (http://www.afdc.energy.gov/vehicles/search)
- AFDC Station Locator Database (http://www.afdc.energy.gov/locator/stations/)
- FuelEconomy.gov's Alternative Fuel Vehicles (AFV) page (http://www.fueleconomy.gov/feg/alternatives.shtml)
- Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers (http://www.afdc.energy.gov/pdfs/pev_handbook.pdf)
- Clean Cities Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (http://www.afdc.energy.gov/uploads/publication/pev_workplace_charging_hosts.pdf)
- Clean Cities Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (http://www.afdc.energy.gov/pdfs/51227.pdf)
- Clean Cities 2015 Vehicle Buyer's Guide (http://www1.eere.energy.gov/cleancities/publications.html)
- Argonne National Laboratory's (ANL) Well-to-Wheels Energy Use and Greenhouse Gas Emissions
 Analysis of Plug-in Hybrid Electric Vehicles report
 (http://www.transportation.anl.gov/pdfs/TA/559.pdf)
- Electric Drive Transportation Associations (EDTA) Electric Drive Sales Dashboard (http://electricdrive.org/index.php?ht=d/sp/i/20952/pid/20952)
- National Fire Protection Association EV Safety Training (http://www.evsafetytraining.org)
- National Alternative Fuels Training Consortium First Responder Safety Training (http://www.naftc.wvu.edu/course_workshop_information/first_responders)
- Plug In America's Vehicle Tracker (http://www.pluginamerica.org/vehicles)

Additional Resources

- 1. Costs Associated with Non-Residential EVSE: http://www.afdc.energy.gov/uploads/publication/evse cost report 2015.pdf
- 2. Alternative Fuel Data Center EVSE page: http://www.afdc.energy.gov/fuels/electricity stations.html
- 3. Clean Cities' Plug-In Electric Vehicle Handbook for:
 - Workplace Charging Hosts: http://www.afdc.energy.gov/uploads/publication/pev_workplace_charging_hosts.pdf
 - Fleet Managers: http://www.afdc.energy.gov/pdfs/pev_handbook.pdf
 - Public Charging Station Hosts: http://www.afdc.energy.gov/pdfs/51227.pdf
 - Consumers: http://www.afdc.energy.gov/uploads/publication/pev consumer handbook.pdf
 - Electrical Contractors: http://www.afdc.energy.gov/pdfs/51228.pdf
- 4. INL Lessons Learned papers from the EV Project: http://avt.inl.gov/evproject.shtml
- 5. Electric Vehicle Supply Equipment Installed Cost Analysis study by EPRI: http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002000577
- 6. DOE Workplace Charging Challenge: http://energy.gov/eere/vehicles/ev-everywhere-workplacecharging-challenge
 - ADA Guidance: http://energy.gov/eere/vehicles/ada-requirements-workplace-charging-installation
 - Signage Guidance: http://energy.gov/eere/vehicles/workplace-charging-challenge-signage-guidance
 - Request for Proposal Guidance: http://energy.gov/eere/vehicles/downloads/request-proposal-guidance
- Siting and Design Guidelines for EVSE: http://www.transportationandclimate.org/files/www.transportationandclimate.org/files/ http://www.transportationandclimate.org/files-14
 Siting and Design Guidelines.pdf

Contact Information

Thank You

Stephen Russell

Email: stephen.russell@state.ma.us

100 Cambridge Street Suite 1020

Boston MA 02114

617 626-7325

Workplace Charging Resources

Workplace Charging Challenge

http://www.energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge

PEV Handbook for Workplace Charging Hosts

http://www.afdc.energy.gov/uploads/publication/pev_workplace_charging_hosts.pdf

More PEV and Charging Information:

http://www.afdc.energy.gov/fuels/electricity basics.html

Getting Started: PEV Handbooks

Helpful Resource:

Clean Cities PEV Handbooks are great resources for fleet managers, station owners, and individuals who are ready to start using PEVs and infrastructure.

ENERGY Energy Efficiency & Renewable Energy

afdc.energy.gov/publications

