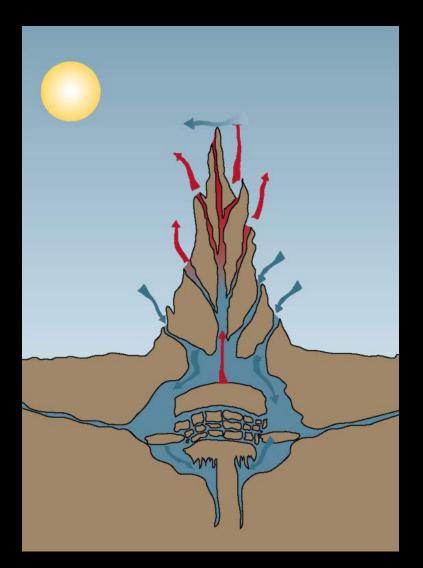

Step 6 - Design Living Buildings and Places

Connect Daily Living to Site

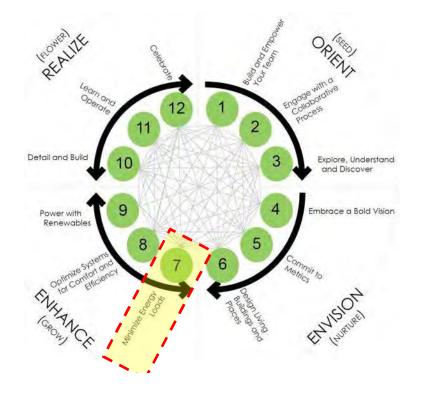

Step 6 - Design Living Buildings and Places

Elongate on East and West Axis

Step 6 -Design Living Buildings and Places

Biophilia + Biomimicry

Step 6 - Design Living Buildings and Places


Health for Occupants and Environment

ENHANCE

• Step 7-Minimize Energy Loads

- 1. Establish an Energy Intensity Number
- 2. Estimate and Target Disaggregated Building Loads
- 3. Focus on Building Envelope Loads

Establish EUI, Target Building Loads, Focus on Envelope Loads

"Whole Think" = Understand Loads Deeply and Clearly

- Who: Green champion, engineers, architect
- When: Schematic
- What are the loads?
 - Who Does What, Where and When in the building
- What are the resources?
- Thoughtfully match resources to loads

Who: How many people in each area?

Establish EUI, Target Building Loads, Focus on Envelope Loads

Where:

Tabulate this information, by room number or zone.

NRG					
Interna	I loads Equipment, Li	ghts and People			
	Modified by NJM 2/4/03				
			PEOPLI	E	
			Peak No.	Average No.	Zone
Room	Room	Zone Name	of People	of People	Diversity
Number	Name				
101	Corridor w/stair 1	NW corridor			
102	Staff Library	Library/account Man.	4	1	0.25
103	Account Manager	Library/account Man.	2	1	0.50
104	Large conference	SW 1st floor conference	6	0	0.00
105	Files	West admin			

Establish EUI, Target Building Loads, Focus on Envelope Loads

When:

- When are how many people in what areas?
- What loads are not coincident?
- Tabulate a schedule.
- Serious geek zone!

Science Center Laboratory Occupancy OCCUPANCY SCHEDULES Total Building, with Diversity

Hour	5	6	7	8	9	10	11
Weekday Avg Occ.	1	1	5	32	32	41	42
Weekend Avg Occ.	1	1	6	6	6	7	7
Weekday Peak Occ.	1	1	8	52	52	54	55
Weekend Peak Occ.	0	0	11	11	11	11	11

Establish EUI, Target Building Loads, Focus on Envelope Loads

What:

- What indoor climate conditions are required in each area?
- What lighting is required in each area?
- What electrical equipment in each area?
- How much ventilation for each area?
- How much hot and cold water is required?

Establish EUI, Target Building Loads, Focus on Envelope Loads

Indoor Conditi	ons Temperature and	RH Control Setp	oints			
Schedule	Type of Spaces		Wir	nter	Sun	nmer
Number	Served		Occupied	Un-Occupied	Occupied	Un-Occupied
1	Air-Conditioned	Temp, F	68	60	75	80
	Spaces	RH, %	Uncontrolled	Uncontrolled	Uncontrolled*	Uncontrolled*
2	Non-air-	Temp, F	68	60	no air co	nditioning
	conditioned	RH, %	Uncontrolled	Uncontrolled	Uncontrolled	Uncontrolled
3	Solarium &	Temp, F	50	50	No AC, natura	al ventilation [1]
	Eco Machine [2]	RH, %	Uncontrolled	Uncontrolled	Uncontrolled	Uncontrolled
4	Vesibule	Temp, F	50	50	no air co	nditioning
		RH, %	Uncontrolled	Uncontrolled	Uncontrolled	Uncontrolled

* dehumidification delivered by cooling system based on expected sensible fraction, but control based on space temperatu

[1] Natural ventilation on 80F (adjustable) setpoint with modulating window operation. EcoMachine to have RH sensor to operate HRV during heating season, with option for electromechnical timer over-ride with timer in EcoMachine mechanical room

[1] Note that natural ventilation designed to maintain inside 10F higher than outside, so Solarium and EcoMachine can be quite warm in summer!

[2] Heating system has capacity to heat space to 68F at winter design conditions; Solarium to have air conditioning, but not enabled in control system

Establish EUI, Target Building Loads, Focus on Envelope Loads

Ventilation Rate

based on ASHRAE 62-2007 + 30%

Space type	Volume	control	Setpoint
Circulation	0.08 cfm/sq.ft	On except late night	
Classrooms	CO2 based	modulated	[3]
Offices, closed	20 cfm [2]	occupancy	per office
Offices, open	CO2 based	modulated	[3]
Mechanical room	1 cfm/sq.ft.	On when cooling need	ded
Stairwells	none		
Solarium	variable	natural ventilation	Temp-based [1]
Ecomachine room	variable	natural ventilation	Temp-based [1]

[1] EcoMachine room has relative humidity (RH) sensor to operate heat recovery ventilation based on RH. No other ventilation provided

[2] While this is higher than ASHRAE 62-2007 + 30%, it is difficult to verify ventilation below this flow rate

[3] CO2 setpoint to be based on providing air flow equivalent to ASHRAE 62-2007 + 30%

Establish EUI, Target Building Loads, Focus on Envelope Loads

		Installed watts/sq.ft.
Type of space	footcandles	maximum
Open and closed office ambient	30	0.8
Office task lighting	50	included in above
Classrooms	50 [1]	0.8
Laboratory	50 [1]	0.8
Circulation ambient	10 - 20	0.5
Solarium	30	0.8 [2]
Ecomachine	30	0.8 [2]
Exterior lighting		
Parking/walks, minimum	0.1	
Perimeter of building	0.1	

Illumination Levels and Lighting Energy Density Goals

[1] 50 fc available, but multiple level switching or dimming for lower levels[2] If additional plant lighting is needed -- outlets with switches in mechanical room adjacent to EcoMachine room to be provided

Establish EUI, Target Building Loads, Focus on Envelope Loads

Space type	Occupancy Control Strategy	Daylight harvesting control strategy
Corridors and circulation	auto-on/auto-off occupancy sensor with minimum light level maintained 24/7	Daylight cutoff where sufficient daylight available
Open office	auto-on/auto-off occupancy sensor	auto-dimming where sufficient daylight available
Closed office, with windows	manual-on/manual-off with auto-off two level lighting, second stage manual	(human occupant is daylighting control)
Closed office, no windows	auto-on/auto-off occupancy sensor two level lighting, second stage manual	
Classrooms	manual-on/auto-off occupancy sensor multi-level lighting	auto-dimming where sufficient daylight available
Vestibule	Scheduled hours	Daylight cutoff
Bathrooms, storage, janitor	auto-on/auto-off occupancy sensor	
Mechanical	manual control	
Solarium	auto-on/auto-off occupancy sensor for low level, manual-on/auto-off high level	Daylight cutoff
EcoMachine	auto-on/auto-off occupancy sensor [1]	Daylight cutoff [1]
Outdoor lighting	Scheduled hours	Daylight cut-off

Lighting control strategy

[1] Set up with over-ride for stay-on, stay-off or auto. Provide connected 4x4 box for future time clock over-ride. Daylight cutoff level adjustable adjustment within 8' of floor. Need to coordinate with EcoMachine designer

Establish EUI, Target Building Loads, Focus on Envelope Loads

- All this goes into the Owners Project Requirements (OPR)
- See Aiken OPR 17 Sep 10.pdf

Establish EUI, Target Building Loads, Focus on Envelope Loads

- Full blown who what when where matrix
- NRG-Occupancy and Internal loads mod by NMLD.xls

Establish EUI, Target Building Loads, Focus on Envelope Loads

Develop a list of very specific "solution concepts" or "strategies" to meet each objective

- Who: Design team job to do first cut;
 Review and revise with Owner
- When: Schematic

Establish EUI, Target Building Loads, Focus on Envelope Loads

- GOAL -OBJECTIVE/METRIC
 - STRATEGIES

Establish EUI, Target Building Loads, Focus on Envelope Loads

- GOAL: Very high energy efficiency - OBJECTIVE/METRIC: EUI of 20 kBtu/sq.ft.-yr
 - STRATEGIES:
 - Super-insulation in walls R-40 double stud wall
 - air or ground source heat pumps
 - energy-recovery ventilation
 - more...

Analyze strategies

Question assumptions

- Who: Design team job to do first cut; Review and revise with Owner
- When: Schematic

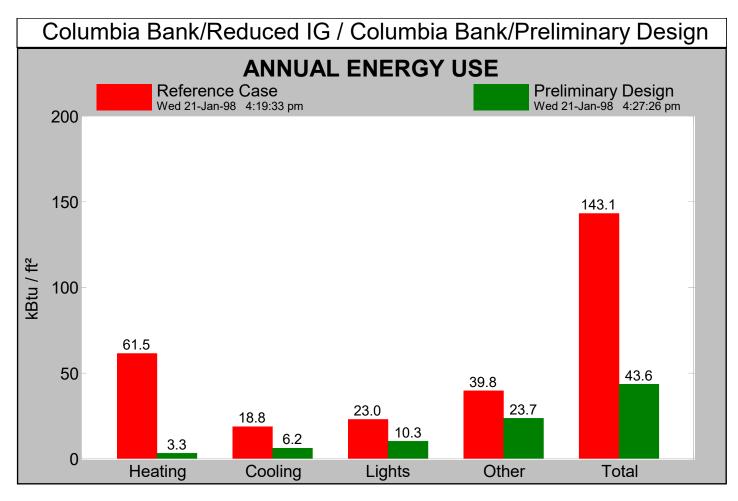
Tons of Cooling Required for 1000 cfm						
Indoor Condition	Temp.	75 F	78F			
	RH	50%	50%			
Design condition	DB/WB					
Burlington						
Energy Code	84/69	1.9	1.6			
Typical	90/73	3.2	2.9			

Tons of Cooling Required for 1000 cfm						
Indoor Condition	Temp.	75 F	78F			
	RH	50%	50%			
Design condition	DB/WB					
Burlington						
Energy Code	84/69	1.9	1.6			
Typical	90/73	3.2	2.9			

- Conservation vs Efficiency
- Risk Management

Establish EUI, Target Building Loads, Focus on Envelope Loads

Tons of Cooling Required for 1000 cfm						
Indoor Condition	Temp.	75 F	78F			
	RH	50%	50%			
Design condition	DB/WB					
Burlington						
Energy Code	84/69	1.9	1.6			
Typical	90/73	3.2	2.9			


- Risk Management
 - Risk is explicit
 - Fall-back is ready
 - Owner owns responsibility for choice
 - Have it in writing
- Examples?

Establish EUI, Target Building Loads, Focus on Envelope Loads

Annual Energy Use Analysis

- Tools:
 - Energy-10 for schematic design
 - Bin analysis or 8760 hour spreadsheet for annual ventilation energy.
 - Equest, Energy Plus and others for DD and CD
 - Daylighting tools:
 - Energy-10
 - Skycalc (for skylights) Portland SkyCalc301.xls
 - Radiance (for daylighting modeling)

Understand the Building

Aiken Energy Analysis -- Wall System Selection Kohler & Lewis December 10, 2009

Option	Walls	Window	Peak Heating Load (MBH)	Annual Heating Load (kBTU/yr)	Peak Cooling Load (Tons)	Annual Cooling Load (kBTU/yr)
1A	Brick – Air Space – Gyp Bd. – Studs filled with 5.5" spray foam + 1" interior Polyiso + (2" poly iso at columns) with 18" thick concrete floor [R -	"R-3"	737	407,135	63	174,189
1B	Brick – Air Space – Gyp Bd. – Studs filled with 5.5" spray foam + 1" interior Polyiso + (2" poly iso at columns) with 18" thick concrete floor [R - 8.1]	Accurate Dorwin (R-5)	648	301,116	62	231,146
2	Brick – Air Space – Gyp Bd. – Studs left filled with fiberglass – 4" polyiso (unknown impact on heat piping) – air and vapor control layer - with 18" floor [R-11.2]	()	643	287,178	62	235,997
ЗA	Brick – Air Space – air control layer - 4" spray or rigid urethane foam – gyp bd. Studs filled with fiberglass – gyp bd., with 18" floor [R- 32.0]	Accurate Dorwin (R-5)	562	197,105	61	273,430
3B	Brick – Air Space – air control layer - 6" spray or rigid urethane foam – gyp bd. Studs filled with fiberglass – gyp bd., with 18" floor [R- 44.0]	Accurate Dorwin (R-5)	550	187,503	60	278,142

Establish EUI, Target Building Loads, Focus on Envelope Loads

Making sense of energy modeling

- Look for the Big Numbers
- What are the big energy users
 - Ventilation?
 - Heating? Cooling?
 - Building enclosure? Which parts?
 - Internal gains equipment? people?
 - Equipment efficiencies?

Establish EUI, Target Building Loads, Focus on Envelope Loads

Evaluate the options

- For each potential upgrade:
- Run peak load and annual energy use for each
- Analyze costs for each upgrade
- (May be many re-runs.)

Establish EUI, Target Building Loads, Focus on Envelope Loads

Evaluate the options

Sample list of options to analyze

- Improved insulation
- Lower air leakage rate
- Lower solar heat gain windows
- Higher insulation value for windows
- Higher equipment efficiency (boilers, chillers, air handlers, elevators, other)
- Energy Recovery ventilation
- Daylighting
- Passive solar gain (mostly residential)

Evaluate the options

Example of single option analysis

- 5000 cfm ventilation, 10 hrs/day 7 days/week
- Energy Recovery Ventilation
- Cost for ERV: ~\$20,000 installed
- Cooling devoted to ventilation without ERV: 9 tons
- AC Downsizing savings: 6 tons at \$2500 per ton, saves \$15,000
- Net cost for ERV: \$5,000

Establish EUI, Target Building Loads, Focus on Envelope Loads

Evaluate the options Example of single option analysis

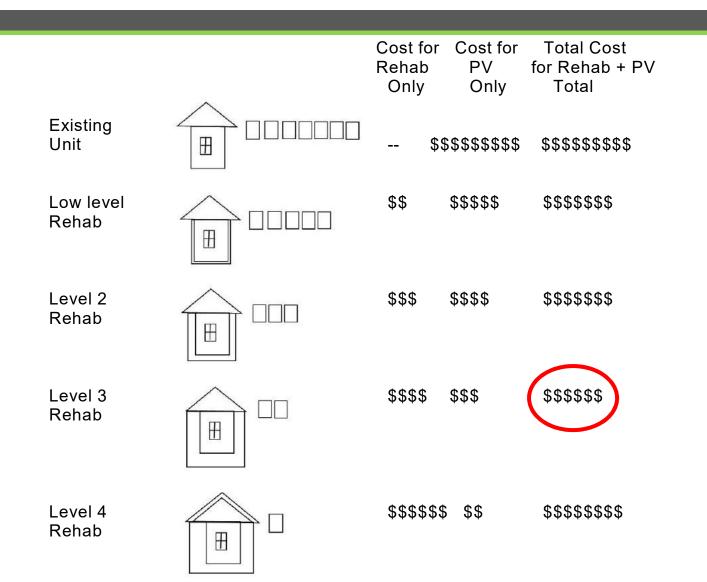
- Energy Recovery Ventilation
- Net installed cost: \$5,000
- First year savings: \$3,000
- First year rate of return on investment: 60%
- 20 year present value of savings: \$70,000
- 20 year net present value: ~\$65,000

Establish EUI, Target Building Loads, Focus on Envelope Loads

Evaluate the options

- What about risk of ERV failing and not enough cooling?
- Risk management is critical
- Owner to understand risk, fall-back, cost and savings, and accept risk

Establish EUI, Target Building Loads, Focus on Envelope Loads


Evaluate the options

- Who is involved in this conversation?
 - Whole systems thinker
 - Energy modeler
 - Mechanical Engineer
 - Cost estimator
 - Architect
 - Owner

Evaluate the options

• To meet a net zero goal, the process is different, VERY different, than typical "payback" or "return on investment" decision making.

Establish EUI, Target Building Loads, Focus on Envelope Loads

NRG Warehouse/manufacturing area:

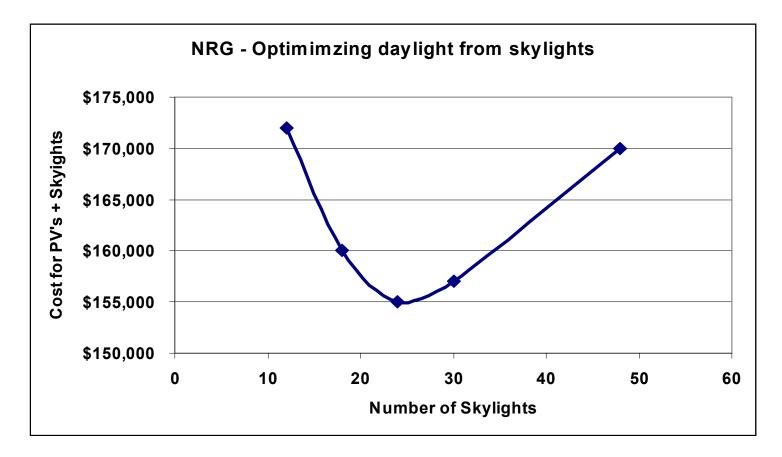
Meet lighting load with PV at minimum cost

Space	80' X 240'			
Ceiling height	~30'			
Light level	30 fc			
PV cost	\$7 per watt			
Skylight cost	\$1,500 each			
Skylight size	4x6			
Sunoptics triple, prismatic				

NRG: 20k sq.ft. Warehouse/manufacturing area: Meet lighting load with PV at minimum cost

See Portland SkyCalc301.xls

NRG Skylig	ht Sizing	Cost to install	(Cost to	Cost for
Number	kWh/yr	PV's to		install	PV's +
skylights	lighting	meet load	S	kylights	skylights
48	14,000	\$98,000	\$	72,000	\$ 170,000
30	16,000	\$112,000	\$	45,000	\$ 157,000
24	17,000	\$119,000	\$	36,000	\$ 155,000
18	19,000	\$133,000	\$	27,000	\$ 160,000
12	22,000	\$154,000	\$	18,000	\$ 172,000


Establish EUI, Target Building Loads, Focus on Envelope Loads

Warehouse/manufacturing area

NRG Warehouse/manufacturing area:

Meet lighting load with PV at minimum cost

